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M
ost current speech recognition systems use 
hidden Markov models (HMMs) to deal with 
the temporal variability of speech and 
Gaussian mixture models (GMMs) to deter-
mine how well each state of each HMM fits a 

frame or a short window of frames of coefficients that repre-
sents the acoustic input. An alternative way to evaluate the fit 
is to use a feed-forward neural network that takes several 
frames of coefficients as input and produces posterior proba-

bilities over HMM states as output. Deep neural networks 
(DNNs) that have many hidden layers and are trained using 
new methods have been shown to outperform GMMs on a vari-
ety of speech recognition benchmarks, sometimes by a large 
margin. This article provides an overview of this progress and 
represents the shared views of four research groups that have 
had recent successes in using DNNs for acoustic modeling in 
speech recognition.

INTRODUCTION
New machine learning algorithms can lead to significant 
advances in automatic speech recognition (ASR). The biggest 
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single advance occurred nearly 
four decades ago with the intro-
duction of the expectation-maxi-
mization (EM) algorithm for 
training HMMs (see [1] and [2] 
for informative historical reviews 
of the introduction of HMMs). 
With the EM algorithm, it be -
came possible to develop speech 
recognition systems for real-
world tasks using the richness of GMMs [3] to represent the 
relationship between HMM states and the acoustic input. In 
these systems the acoustic input is typically represented by con-
catenating Mel-frequency cepstral coefficients (MFCCs) or per-
ceptual linear predictive coefficients (PLPs) [4] computed from 
the raw waveform and their first- and second-order temporal 
differences [5]. This nonadaptive but highly engineered prepro-
cessing of the waveform is designed to discard the large amount 
of information in waveforms that is considered to be irrelevant 
for discrimination and to express the remaining information in 
a form that facilitates discrimination with GMM-HMMs. 

GMMs have a number of advantages that make them suit-
able for modeling the probability distributions over vectors of 
input features that are associated with each state of an HMM. 
With enough components, they can model probability distri-
butions to any required level of accuracy, and they are fairly 
easy to fit to data using the EM algorithm. A huge amount of 
research has gone into finding ways of constraining GMMs to 
increase their evaluation speed and to optimize the tradeoff 
between their flexibility and the amount of training data 
required to avoid serious overfitting [6]. 

The recognition accuracy of a GMM-HMM system can be 
further improved if it is discriminatively fine-tuned after it has 
been generatively trained to maximize its probability of gener-
ating the observed data, especially if the discriminative objec-
tive function used for training is closely related to the error 
rate on phones, words, or sentences [7]. The accuracy can also 
be improved by augmenting (or concatenating) the input fea-
tures (e.g., MFCCs) with “tandem” or bottleneck features gen-
erated using neural networks [8], [69]. GMMs are so successful 
that it is difficult for any new method to outperform them for 
acoustic modeling. 

Despite all their advantages, GMMs have a serious short-
coming—they are statistically inefficient for modeling data 
that lie on or near a nonlinear manifold in the data space. For 
example, modeling the set of points that lie very close to the 
surface of a sphere only requires a few parameters using an 
appropriate model class, but it requires a very large number of 
diagonal Gaussians or a fairly large number of full-covariance 
Gaussians. Speech is produced by modulating a relatively 
small number of parameters of a dynamical system [10], [11], 
and this implies that its true underlying structure is much 
lower-dimensional than is immediately apparent in a window 
that contains hundreds of coefficients. We believe, therefore, 
that other types of model may work better than GMMs for 

acoustic modeling if they can 
more effectively exploit informa-
tion embedded in a large win-
dow of frames. 

Artificial neural networks 
trained by backpropagating 
error derivatives have the poten-
tial to learn much better models 
of data that lie on or near a non-
linear manifold. In fact, two 

decades ago, researchers achieved some success using artificial 
neural networks with a single layer of nonlinear hidden units 
to predict HMM states from windows of acoustic coefficients 
[9]. At that time, however, neither the hardware nor the learn-
ing algorithms were adequate for training neural networks 
with many hidden layers on large amounts of data, and the 
performance benefits of using neural networks with a single 
hidden layer were not sufficiently large to seriously challenge 
GMMs. As a result, the main practical contribution of neural 
networks at that time was to provide extra features in tandem 
or bottleneck systems. 

Over the last few years, advances in both machine learning 
algorithms and computer hardware have led to more efficient 
methods for training DNNs that contain many layers of non-
linear hidden units and a very large output layer. The large 
output layer is required to accommodate the large number of 
HMM states that arise when each phone is modeled by a num-
ber of different “triphone” HMMs that take into account the 
phones on either side. Even when many of the states of these 
triphone HMMs are tied together, there can be thousands of 
tied states. Using the new learning methods, several different 
research groups have shown that DNNs can outperform GMMs 
at acoustic modeling for speech recognition on a variety of 
data sets including large data sets with large vocabularies. 

This review article aims to represent the shared views of 
research groups at the University of Toronto, Microsoft Research 
(MSR), Google, and IBM Research, who have all had recent suc-
cesses in using DNNs for acoustic modeling. The article starts by 
describing the two-stage training procedure that is used for fit-
ting the DNNs. In the first stage, layers of feature detectors are 
initialized, one layer at a time, by fitting a stack of generative 
models, each of which has one layer of latent variables. These 
generative models are trained without using any information 
about the HMM states that the acoustic model will need to dis-
criminate. In the second stage, each generative model in the 
stack is used to initialize one layer of hidden units in a DNN and 
the whole network is then discriminatively fine-tuned to predict 
the target HMM states. These targets are obtained by using a 
baseline GMM-HMM system to produce a forced alignment. 

In this article, we review exploratory experiments on the 
TIMIT database [12], [13] that were used to demonstrate the 
power of this two-stage training procedure for acoustic mod-
eling. The DNNs that worked well on TIMIT were then applied 
to five different large-vocabulary continuous speech recogni-
tion (LVCSR) tasks by three different research groups whose 
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results we also summarize. The DNNs worked well on all of 
these tasks when compared with highly tuned GMM-HMM 
systems, and on some of the tasks they outperformed the state 
of the art by a large margin. We 
also describe some other uses of 
DNNs for acoustic modeling and 
some variations on the training 
procedure. 

TRAINING DEEP NEURAL 
NETWORKS
A DNN is a feed-forward, artificial 
neural network that has more than one layer of hidden units 
between its inputs and its outputs. Each hidden unit, j, typically 
uses the logistic function (the closely related hyberbolic tangent 
is also often used and any function with a well-behaved deriva-
tive can be used)  to map its total input from the layer below, 
x ,j  to the scalar state, y j  that it sends to the layer above.  

  ( ) ,y x
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where b j  is the bias of unit j, i is an index over units in the 
layer below, and wij  is the weight on a connection to unit j 
from unit i in the layer below. For multiclass classification, 
output unit j converts its total input, x j , into a class probabil-
ity, p j , by using the “softmax” nonlinearity  
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where k is an index over all classes. 
DNNs can be discriminatively trained (DT) by backpropa-

gating derivatives of a cost function that measures the discrep-
ancy between the target outputs and the actual outputs 
produced for each training case [14]. When using the softmax 
output function, the natural cost function C is the cross entro-
py between the target probabilities d and the outputs of the 
softmax, p 

 ,logC d pj j
j

=-/  (3)

where the target probabilities, typically taking values of one or 
zero, are the supervised information provided to train the 
DNN classifier. 

For large training sets, it is typically more efficient to com-
pute the derivatives on a small, random “minibatch” of training 
cases, rather than the whole training set, before updating the 
weights in proportion to the gradient. This stochastic gradient 
descent method can be further improved by using a “momen-
tum” coefficient, 0 11 1a , that smooths the gradient comput-
ed for minibatch t, thereby damping oscillations across ravines 
and speeding progress down ravines 
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The update rule for biases can be derived by treating them as 
weights on connections coming from units that always have a 
state of one. 

To reduce overfitting, large 
weights can be penalized in propor-
tion to their squared magnitude, or 
the learning can simply be termi-
nated at the point at which perfor-
mance on a held-out validation set 
starts getting worse [9]. In DNNs 
with full connectivity between adja-
cent layers, the initial weights are 

given small random values to prevent all of the hidden units in a 
layer from getting exactly the same gradient. 

DNNs with many hidden layers are hard to optimize. 
Gradient descent from a random starting point near the origin 
is not the best way to find a good set of weights, and unless the 
initial scales of the weights are carefully chosen [15], the back-
propagated gradients will have very different magnitudes in dif-
ferent layers. In addition to the optimization issues, DNNs may 
generalize poorly to held-out test data. DNNs with many hidden 
layers and many units per layer are very flexible models with a 
very large number of parameters. This makes them capable of 
modeling very complex and highly nonlinear relationships 
between inputs and outputs. This ability is important for high-
quality acoustic modeling, but it also allows them to model spu-
rious regularities that are an accidental property of the 
particular examples in the training set, which can lead to severe 
overfitting. Weight penalties or early stopping can reduce the 
overfitting but only by removing much of the modeling power. 
Very large training sets [16] can reduce overfitting while pre-
serving modeling power, but only by making training very com-
putationally expensive. What we need is a better method of 
using the information in the training set to build multiple lay-
ers of nonlinear feature detectors. 

GENERATIVE PRETRAINING
Instead of designing feature detectors to be good for discrimi-
nating between classes, we can start by designing them to be 
good at modeling the structure in the input data. The idea is to 
learn one layer of feature detectors at a time with the states of 
the feature detectors in one layer acting as the data for training 
the next layer. After this generative “pretraining,” the multiple 
layers of feature detectors can be used as a much better start-
ing point for a discriminative “fine-tuning” phase during which 
backpropagation through the DNN slightly adjusts the weights 
found in pretraining [17]. Some of the high-level features cre-
ated by the generative pretraining will be of little use for dis-
crimination, but others will be far more useful than the raw 
inputs. The generative pretraining finds a region of the weight-
space that allows the discriminative fine-tuning to make rapid 
progress, and it also significantly reduces overfitting [18]. 

A single layer of feature detectors can be learned by fitting a 
generative model with one layer of latent variables to the input 
data. There are two broad classes of generative model to choose 
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from. A directed model generates data by first choosing the 
states of the latent variables from a prior distribution and then 
choosing the states of the observable variables from their condi-
tional distributions given the latent states. Examples of directed 
models with one layer of latent variables are factor analysis, in 
which the latent variables are drawn from an isotropic 
Gaussian, and GMMs, in which they are drawn from a discrete 
distribution. An undirected model has a very different way of 
generating data. Instead of using one set of parameters to define 
a prior distribution over the latent variables and a separate set 
of parameters to define the condition-
al distributions of the observable vari-
ables given the values of the latent 
variables, an undirected model uses a 
single set of parameters, W, to define 
the joint probability of a vector of val-
ues of the observable variables, v, and 
a vector of values of the latent vari-
ables, h, via an energy function, E 

 v h W( , ; ) , ,p
Z

e Z e1 v h W v h W
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where Z is called the partition function. 
If many different latent variables interact nonlinearly to 

generate each data vector, it is difficult to infer the states of 
the latent variables from the observed data in a directed 
model because of a phenomenon known as “explaining away” 
[19]. In undirected models, however, inference is easy pro-
vided the latent variables do not have edges linking them. 
Such a restricted class of undirected models is ideal for lay-
erwise pretraining because each layer will have an easy infer-
ence procedure. 

We start by describing an approximate learning algorithm 
for a restricted Boltzmann machine (RBM) which consists of a 
layer of stochastic binary “visible” units that represent binary 
input data connected to a layer of stochastic binary hidden units 
that learn to model significant nonindependencies between the 
visible units [20]. There are undirected connections between 
visible and hidden units but no visible-visible or hidden-hidden 
connections. An RBM is a type of Markov random field (MRF) 
but differs from most MRFs in several ways: it has a bipartite 
connectivity graph, it does not usually share weights between 
different units, and a subset of the variables are unobserved, 
even during training. 

AN EFFICIENT LEARNING PROCEDURE FOR RBMs
A joint configuration, (v, h) of the visible and hidden units of an 
RBM has an energy given by  

 v h( )E a v b h v h w, i i
i

j j
j

i j ij
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where ,v hi j  are the binary states of visible unit i and hidden 
unit j, ,a bi j  are their biases, and wij  is the weight between 
them. The network assigns a probability to every possible pair of 
a visible and a hidden vector via this energy function as in (5) 

and the probability that the network assigns to a visible vector, 
v, is given by summing over all possible hidden vectors  

 v( )p
Z

e1
h

v, h( )E= -/ . (7)

The derivative of the log probability of a training set with 
respect to a weight is surprisingly simple  
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where N is the size of the 
training set and the angle 
brackets are used to denote 
expectations under the dis-
tribution specified by the 
subscript that follows. The 
simple derivative in (8) 
leads to a very simple learn-
ing rule for performing sto-

chastic steepest ascent in the log probability of the training data  

 w v h v hdata modelij i j i j1 2 1 2eD = -^ h, (9) 

where e  is a learning rate. 
The absence of direct connections between hidden units in 

an RBM makes it is very easy to get an unbiased sample of 
v hi j data1 2 . Given a randomly selected training case, v, the 

binary state, h j , of each hidden unit, j, is set to one with prob-
ability 

 v( 1 ) ( )p h b v wlogisticj j i ij
i

;= = +/  (10) 

and v hi j  is then an unbiased sample. The absence of direct con-
nections between visible units in an RBM makes it very easy to 
get an unbiased sample of the state of a visible unit, given a hid-
den vector 

 ( ) ( ) .hp v a h w1 logistici i j ij
j

;= = +/  (11)

Getting an unbiased sample of v hi j model1 2 , however, is 
much more difficult. It can be done by starting at any random 
state of the visible units and performing alternating Gibbs sam-
pling for a very long time. Alternating Gibbs sampling consists 
of updating all of the hidden units in parallel using (10) fol-
lowed by updating all of the visible units in parallel using (11). 

A much faster learning procedure called contrastive diver-
gence (CD) was proposed in [20]. This starts by setting the states 
of the visible units to a training vector. Then the binary states of 
the hidden units are all computed in parallel using (10). Once 
binary states have been chosen for the hidden units, a “recon-
struction” is produced by setting each vi  to one with a probabil-
ity given by (11). Finally, the states of the hidden units are 
updated again. The change in a weight is then given by 

 ( )w v h v hij i j i jdata recon1 2 1 2eD = - . (12)
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IN THE TRAINING SET TO BUILD 
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A simplified version of the same learning rule that uses the 
states of individual units instead of pairwise products is used for 
the biases. 

CD works well even though it is only crudely approximating 
the gradient of the log probability 
of the training data [20]. RBMs 
learn better generative models if 
more steps of alternating Gibbs 
sampling are used before collecting 
the statistics for the second term in 
the learning rule, but for the pur-
poses of pretraining feature detec-
tors,  more alternations are 
generally of little value and all the 
results reviewed here were obtained using CD1 which does a sin-
gle full step of alternating Gibbs sampling after the initial 
update of the hidden units. To suppress noise in the learning, 
the real-valued probabilities rather than binary samples are gen-
erally used for the reconstructions and the subsequent states of 
the hidden units, but it is important to use sampled binary val-
ues for the first computation of the hidden states because the 
sampling noise acts as a very effective regularizer that prevents 
overfitting [21]. 

MODELING REAL-VALUED DATA
Real-valued data, such as MFCCs, are more naturally modeled 
by linear variables with Gaussian noise and the RBM energy 
function can be modified to accommodate such variables, giving 
a Gaussian–Bernoulli RBM (GRBM)  

   v h( , )
( )E v a b h v h w

2 i

i i

i
j j

i

i
j ij2

2

vis ,j i jhidv v
=

-
- -

! !

/ / / , (13)

where iv  is the standard deviation of the Gaussian noise for vis-
ible unit i. 

The two conditional distributions required for CD1 learning 
are  

 v( )p h b v wlogisticj j
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i
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j

ii
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where ( , )N 2n v  is a Gaussian. Learning the standard devia-
tions of a GRBM is problematic for reasons described in [21], so 
for pretraining using CD1, the data are normalized so that each 
coefficient has zero mean and unit variance, the standard devia-
tions are set to one when computing ( )v hp ; , and no noise is 
added to the reconstructions. This avoids the issue of deciding 
the right noise level. 

STACKING RBMs TO MAKE A DEEP BELIEF NETWORK
After training an RBM on the data, the inferred states of the hid-
den units can be used as data for training another RBM that 
learns to model the significant dependencies between the hid-
den units of the first RBM. This can be repeated as many times 
as desired to produce many layers of nonlinear feature detectors 

that represent progressively more complex statistical structure 
in the data. The RBMs in a stack can be combined in a surpris-
ing way to produce [22] a single, multilayer generative model 
called a deep belief net (DBN) (not to be confused with a 

dynamic Bayesian net, which 
is a type of directed model of 
temporal data that unfortu-
nately has the same acronym). 
Even though each RBM is an 
undirected model, the DBN 
formed by the whole stack is a 
hybrid generative model 
whose top two layers are undi-
rected (they are the final RBM 

in the stack) but whose lower layers have top-down, directed 
connections (see Figure 1). 

To understand how RBMs are composed into a DBN, it is 
helpful to rewrite (7) and to make explicit the dependence on W: 

 v W h W h W( ; ) ( ; ) ( ; ),vp p p
h

;=/  (16) 

where h W( ; )p  is defined as in (7) but with the roles of the visi-
ble and hidden units reversed. Now it is clear that the model can 
be improved by holding v h W( ; )p ;  fixed after training the RBM, 
but replacing the prior over hidden vectors h W( ; )p  by a better 
prior, i.e., a prior that is closer to the aggregated posterior over 
hidden vectors that can be sampled by first picking a training 
case and then inferring a hidden vector using (14). This aggre-
gated posterior is exactly what the next RBM in the stack is 
trained to model. 

As shown in [22], there is a series of variational bounds on 
the log probability of the training data, and furthermore, each 
time a new RBM is added to the stack, the variational bound on 
the new and deeper DBN is better than the previous variational 
bound, provided the new RBM is initialized and learned in the 
right way. While the existence of a bound that keeps improving 
is mathematically reassuring, it does not answer the practical 
issue, addressed in this article, of whether the learned feature 
detectors are useful for discrimination on a task that is 
unknown while training the DBN. Nor does it guarantee that 
anything improves when we use efficient short-cuts such as 
CD1  training of the RBMs. 

One very nice property of a DBN that distinguishes it from 
other multilayer, directed, nonlinear generative models is that it 
is possible to infer the states of the layers of hidden units in a 
single forward pass. This inference, which is used in deriving 
the variational bound, is not exactly correct but is fairly accu-
rate. So after learning a DBN by training a stack of RBMs, we 
can jettison the whole probabilistic framework and simply use 
the generative weights in the reverse direction as a way of ini-
tializing all the feature detecting layers of a deterministic feed-
forward DNN. We then just add a final softmax layer and train 
the whole DNN discriminatively. Unfortunately, a DNN that is 
pretrained generatively as a DBN is often still called a DBN in 
the literature. For clarity, we call it a DBN-DNN. 

ONE VERY NICE PROPERTY OF 
A DBN THAT DISTINGUISHES IT FROM 

OTHER MULTILAYER, DIRECTED, 
NONLINEAR GENERATIVE MODELS 
IS THAT IT IS POSSIBLE TO INFER THE 
STATES OF THE LAYERS OF HIDDEN 

UNITS IN A SINGLE FORWARD PASS. 
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INTERFACING A DNN WITH AN HMM
After it has been discriminatively fine-tuned, a DNN outputs 
probabilities of the form HMMstate AcousticInput( )p ; . But to 
compute a Viterbi alignment or to run the forward-backward 
algorithm within the HMM framework, we require the likeli-
hood (AcousticInput HMMstate)p ; . The posterior probabilities 
that the DNN outputs can be converted into the scaled likeli-
hood by dividing them by the frequencies of the HMM states in 
the forced alignment that is used for fine-tuning the DNN [9]. 
All of the likelihoods produced in this way are scaled by the 
same unknown factor of AcousticInput( )p , but this has no 
effect on the alignment. Although this conversion appears to 
have little effect on some recognition tasks, it can be important 
for tasks where training labels are highly unbalanced (e.g., with 
many frames of silences). 

PHONETIC CLASSIFICATION 
AND RECOGNITION ON TIMIT
The TIMIT data set provides a simple and convenient way of test-
ing new approaches to speech recognition. The training set is 
small enough to make it feasible to try many variations of a new 
method and many existing techniques have already been bench-
marked on the core test set, so it is easy to see if a new approach 
is promising by comparing it with existing techniques that have 
been implemented by their proponents [23]. Experience has 
shown that performance improvements on TIMIT do not neces-
sarily translate into performance improvements on large vocab-
ulary tasks with less controlled recording conditions and much 
more training data. Nevertheless, TIMIT provides a good start-

ing point for developing a new approach, especially one that 
requires a challenging amount of computation. 

Mohamed et. al. [12] showed that a DBN-DNN acoustic 
model outperformed the best published recognition results on 
TIMIT at about the same time as Sainath et. al. [23] achieved a 
similar improvement on TIMIT by applying state-of-the-art 
techniques developed for large vocabulary recognition. 
Subsequent work combined the two approaches by using state-
of-the-art, DT speaker-dependent features as input to the DBN-
DNN [24], but this produced little further improvement, 
probably because the hidden layers of the DBN-DNN were 
already doing quite a good job of progressively eliminating 
speaker differences [25]. 

The DBN-DNNs that worked best on the TIMIT data formed 
the starting point for subsequent experiments on much more 
challenging large vocabulary tasks that were too computational-
ly intensive to allow extensive exploration of variations in the 
architecture of the neural network, the representation of the 
acoustic input, or the training procedure. 

For simplicity, all hidden layers always had the same size, 
but even with this constraint it was impossible to train all possi-
ble combinations of number of hidden layers [1, 2, 3, 4, 5, 6, 7, 
8], number of units per layer [512, 1,024, 2,048, 3,072], and 
number of frames of acoustic data in the input layer [7, 11, 15, 
17, 27, 37]. Fortunately, the performance of the networks on 
the TIMIT core test set was fairly insensitive to the precise 
details of the architecture and the results in [13] suggest that 
any combination of the numbers in boldface probably has an 
error rate within about 2% of the very best combination. This 

GRBM

RBM

RBM DBN

DBN-DNN

Copy

Copy

W1

W2

W3 W3

W4 = 0

W2

W1

W3
T

W2
T

W1
T

[FIG1] The sequence of operations used to create a DBN with three hidden layers and to convert it to a pretrained DBN-DNN. First, a 
GRBM is trained to model a window of frames of real-valued acoustic coefficients. Then the states of the binary hidden units of the 
GRBM are used as data for training an RBM. This is repeated to create as many hidden layers as desired. Then the stack of RBMs is 
converted to a single generative model, a DBN, by replacing the undirected connections of the lower level RBMs by top-down, directed 
connections. Finally, a pretrained DBN-DNN is created by adding a “softmax” output layer that contains one unit for each possible state 
of each HMM. The DBN-DNN is then discriminatively trained to predict the HMM state corresponding to the central frame of the input 
window in a forced alignment.
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robustness is crucial for methods such as DBN-DNNs that have 
a lot of tuneable metaparameters. Our consistent finding is that 
multiple hidden layers always worked better than one hidden 
layer and, with multiple hidden layers, pretraining always 
improved the results on both the development and test sets in 
the TIMIT task. Details of the learning rates, stopping criteria, 
momentum, L2 weight penalties and minibatch size for both 
the pretraining and fine-tuning are given in [13]. 

Table 1 compares DBN-DNNs with a variety of other meth-
ods on the TIMIT core test set. For each type of DBN-DNN the 
architecture that performed best on the development set is 
reported. All methods use MFCCs as inputs except for the three 
marked “fbank” that use log Mel-scale filter-bank outputs. 

PREPROCESSING THE WAVEFORM 
FOR DEEP NEURAL NETWORKS
State-of-the-art ASR systems do not use filter-bank coefficients 
as the input representation because they are strongly correlated 
so modeling them well requires either full covariance Gaussians 
or a huge number of diagonal Gaussians. MFCCs offer a more 
suitable alternative as their individual components are roughly 
independent so they are much easier to model using a mixture 
of diagonal covariance Gaussians. DBN-DNNs do not require 
uncorrelated data and, on the TIMIT database, the work reported 
in [13] showed that the best performing DBN-DNNs trained with 
filter-bank features had a phone error rate 1.7% lower than the 
best performing DBN-DNNs trained with MFCCs (see Table 1). 

FINE-TUNING DBN-DNNs TO 
OPTIMIZE MUTUAL INFORMATION
In the experiments using TIMIT discussed above, the DNNs 
were fine-tuned to optimize the per frame cross entropy 
between the target HMM state and the predictions. The transi-
tion parameters and language model scores were obtained from 
an HMM-like approach and were trained independently of the 

DNN weights. However, it has long been known that sequence 
classification criteria, which are more directly correlated with 
the overall word or phone error rate, can be very helpful in 
improving recognition accuracy [7], [35] and the benefit of 
using such sequence classification criteria with shallow neural 
networks has already been shown by [36]–[38]. In the more 
recent work reported in [31], one popular type of sequence clas-
sification criterion, maximum mutual information (MMI), pro-
posed as early as 1986 [7], was successfully applied to learn 
DBN-DNN weights for the TIMIT phone recognition task. MMI 
optimizes the conditional probability ( )p l v1: 1:T T;  of the whole 
sequence of labels, l1:T , with length T, given the whole visible 
feature utterance v1:T , or equivalently the hidden feature 
sequence h1:T  extracted by the DNN  
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where the transition feature ( , )l lij t t1z -  takes on a value of one if 
l i1t =-  and l jt = , and otherwise takes on a value of zero, 
where ijc  is the parameter associated with this transition feature, 
htd  is the dth dimension of the hidden unit value at the tth 
frame at the final layer of the DNN, and where D is the number of 
units in the final hidden layer. Note the objective function of (17) 
derived from mutual information [35] is the same as the condi-
tional likelihood associated with a specialized linear-chain condi-
tional random field. Here, it is the topmost layer of the DNN 
below the softmax layer, not the raw speech coefficients of MFCC 
or PLP, that provides “features” to the conditional random field. 

To optimize the log conditional probability ( )p l v: :T
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1 1;  of the 
nth utterance, we take the gradient over the activation parame-
ters kdm , transition parameters ijc , and the lower-layer weights 
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Note that the gradient ( ) /( )log p l v w1: 1:T
n

T
n

ij2;2^ h  above can be 
viewed as back-propagating the error ( ) ( ),l k p l k v :t

n
t
n

T
n
1;d = - =  

versus ( ) ( )l k p l k vt
n

t
n

t
n

;d = - =  in the frame-based training 
algorithm. 

In implementing the above learning algorithm for a DBN-
DNN, the DNN weights can first be fine-tuned to optimize the 
per frame cross entropy. The transition parameters can be ini-
tialized from the combination of the HMM transition matrices 

[TABLE 1] COMPARISONS AMONG THE REPORTED 
SPEAKER-INDEPENDENT (SI) PHONETIC RECOGNITION 
ACCURACY RESULTS ON TIMIT CORE TEST SET 
WITH 192 SENTENCES.

METHOD PER 

CD-HMM [26] 27.3%

AUGMENTED CONDITIONAL RANDOM FIELDS [26] 26.6%

RANDOMLY INITIALIZED RECURRENT NEURAL NETS [27] 26.1%

BAYESIAN TRIPHONE GMM-HMM [28] 25.6%

MONOPHONE HTMS [29] 24.8%

HETEROGENEOUS CLASSIFIERS [30] 24.4%

MONOPHONE RANDOMLY INITIALIZED DNNs (SIX LAYERS) [13] 23.4%

MONOPHONE DBN-DNNs (SIX LAYERS) [13] 22.4%

MONOPHONE DBN-DNNs WITH MMI TRAINING [31] 22.1%

TRIPHONE GMM-HMMs DT W/ BMMI [32] 21.7%

MONOPHONE DBN-DNNs ON FBANK (EIGHT LAYERS) [13] 20.7%

MONOPHONE MCRBM-DBN-DNNs ON FBANK (FIVE LAYERS) [33] 20.5%

MONOPHONE CONVOLUTIONAL DNNs ON FBANK (THREE LAYERS) 
[34] 20.0%
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and the “phone language” model scores, and can be further 
optimized by tuning the transition features while fixing the 
DNN weights before the joint optimization. Using the joint opti-
mization with careful scheduling, we observe that the sequential 
MMI training can outperform the frame-level training by about 
5% relative within the same system in the same laboratory. 

CONVOLUTIONAL DNNs FOR 
PHONE CLASSIFICATION AND RECOGNITION
All the previously cited work reported phone recognition results 
on the TIMIT database. In recognition experiments, the input is 
the acoustic input for the whole utterance while the output is 
the spoken phonetic sequence. A 
decoding process using a phone 
language model is used to pro-
duce this output sequence. 
Phonetic classification is a differ-
ent task where the acoustic input 
has already been labeled with the 
correct boundaries between dif-
ferent phonetic units and the 
goal is to classify these phones conditioned on the given bound-
aries. In [39], convolutional DBN-DNNs were introduced and 
successfully applied to various audio tasks including phone clas-
sification on the TIMIT database. In this model, the RBM was 
made convolutional in time by sharing weights between hidden 
units that detect the same feature at different times. A max-
pooling operation was then performed, which takes the maxi-
mal activation over a pool of adjacent hidden units that share 
the same weights but apply them at different times. This yields 
some temporal invariance. 

Although convolutional models along the temporal dimen-
sion achieved good classification results [39], applying them to 
phone recognition is not straightforward. This is because tem-
poral variations in speech can be partially handled by the 
dynamic programing procedure in the HMM component and 
those aspects of temporal variation that cannot be adequately 
handled by the HMM can be addressed more explicitly and effec-
tively by hidden trajectory models [40]. 

The work reported in [34] applied local convolutional filters 
with max-pooling to the frequency rather than time dimension 
of the spectrogram. Sharing-weights and pooling over frequen-
cy was motivated by the shifts in formant frequencies caused by 
speaker variations. It provides some speaker invariance while 
also offering noise robustness due to the band-limited nature of 
the filters. [34] only used weight-sharing and max-pooling 
across nearby frequencies because, unlike features that occur at 
different positions in images, acoustic features occurring at very 
different frequencies are very different. 

A SUMMARY OF THE DIFFERENCES 
BETWEEN DNNs AND GMMs
Here we summarize the main differences between the DNNs and 
GMMs used in the TIMIT experiments described so far in this 
article. First, one major element of the DBN-DNN, the RBM, 

which serves as the building block for pretraining, is an instance 
of “product of experts” [20], in contrast to mixture models that 
are a “sum of experts.” Product models have only very recently 
been explored in speech processing, e.g., [41]. Mixture models 
with a large number of components use their parameters ineffi-
ciently because each parameter only applies to a very small frac-
tion of the data whereas each parameter of a product model is 
constrained by a large fraction of the data. Second, while both 
DNNs and GMMs are nonlinear models, the nature of the nonlin-
earity is very different. A DNN has no problem modeling multiple 
simultaneous events within one frame or window because it can 
use different subsets of its hidden units to model different events. 

By contrast, a GMM assumes that 
each datapoint is generated by a 
single component of the mixture 
so it has no efficient way of mod-
eling multiple simultaneous 
events. Third, DNNs are good at 
exploiting multiple frames of 
input coefficients whereas GMMs 
that use diagonal covariance 

matrices benefit much less from multiple frames because they 
require decorrelated inputs. Finally, DNNs are learned using sto-
chastic gradient descent, while GMMs are learned using the EM 
algorithm or its extensions [35], which makes GMM learning 
much easier to parallelize on a cluster machine. 

COMPARING DBN-DNNs WITH GMMs 
FOR LARGE-VOCABULARY SPEECH RECOGNITION
The success of DBN-DNNs on TIMIT tasks starting in 2009 
motivated more ambitious experiments with much larger 
vocabularies and more varied speaking styles. In this section, 
we review experiments by three different speech groups on five 
different benchmark tasks for large-vocabulary speech recogni-
tion. To make DBN-DNNs work really well on large vocabulary 
tasks it is important to replace the monophone HMMs used for 
TIMIT (and also for early neural network/HMM hybrid systems) 
with triphone HMMs that have many thousands of tied states 
[42]. Predicting these context-dependent states provides several 
advantages over monophone targets. They supply more bits of 
information per frame in the labels. They also make it possible 
to use a more powerful triphone HMM decoder and to exploit 
the sensible classes discovered by the decision tree clustering 
that is used to tie the states of different triphone HMMs. Using 
context-dependent HMM states, it is possible to outperform 
state-of-the-art BMMI trained GMM-HMM systems with a two-
hidden-layer neural network without using any pretraining 
[43], though using more hidden layers and pretraining works 
even better. 

BING-VOICE-SEARCH SPEECH RECOGNITION TASK
The first successful use of acoustic models based on DBN-DNNs 
for a large vocabulary task used data collected from the Bing 
mobile voice search application (BMVS). The task used 24 h of 
training data with a high degree of acoustic variability caused by 

THE SUCCESS OF DBN-DNNs ON TIMIT 
TASKS STARTING IN 2009 MOTIVATED 

MORE AMBITIOUS EXPERIMENTS WITH 
MUCH LARGER VOCABULARIES AND 

MORE VARIED SPEAKING STYLES. 
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noise, music, side-speech, accents, sloppy pronunciation, hesita-
tion, repetition, interruptions, and mobile phone differences. 
The results reported in [42] demonstrated that the best DNN-
HMM acoustic model trained with context-dependent states as 
targets achieved a sentence accuracy of 69.6% on the test set, 
compared with 63.8% for a strong, minimum phone error 
(MPE)-trained GMM-HMM baseline. 

The DBN-DNN used in the experiments was based on one of 
the DBN-DNNs that worked well for the TIMIT task. It used five 
pretrained layers of hidden units with 2,048 units per layer and 
was trained to classify the central frame of an 11-frame acoustic 
context window using 761 possible context-dependent states as 
targets. In addition to demonstrating that a DBN-DNN could 
provide gains on a large vocabulary task, several other impor-
tant issues were explicitly investigated in [42]. It was found that 
using tied triphone context-dependent state targets was crucial 
and clearly superior to using monophone state targets, even 
when the latter were derived from the same forced alignment 
with the same baseline. It was also confirmed that the lower the 
error rate of the system used during forced alignment to gener-
ate frame-level training labels for the neural net, the lower the 
error rate of the final neural-net-based system. This effect was 
consistent across all the alignments they tried, including mono-
phone alignments, alignments from ML-trained GMM-HMM 
systems, and alignments from DT GMM-HMM systems. 

Further work after that of [42] extended the DNN-HMM 
acoustic model from 24 h of training data to 48 h and explored 
the respective roles of pretraining and fine-tuning the DBN-
DNN [44]. As expected, pretraining is helpful in training the 
DBN-DNN because it initializes the DBN-DNN weights to a 
point in the weight-space from which fine-tuning is highly effec-
tive. However, a moderate increase of the amount of unlabeled 
pretraining data has an insignificant effect on the final recogni-
tion results (69.6% to 69.8%), as long as the original training 
set is fairly large. By contrast, the same amount of additional 
labeled fine-tuning training data significantly improves the per-
formance of the DNN-HMMs (accuracy from 69.6% to 71.7%). 

SWITCHBOARD SPEECH RECOGNITION TASK
The DNN-HMM training recipe developed for the Bing voice 
search data was applied unaltered to the Switchboard speech rec-
ognition task [43] to confirm the suitability of DNN-HMM acous-
tic models for large vocabulary tasks. Before this work, 
DNN-HMM acoustic models had only been trained with up to 
48 h of data [44] and hundreds of tied triphone states as targets, 
whereas this work used over 300 h of training data and thou-
sands of tied triphone states as targets. Furthermore, 
Switchboard is a publicly available speech-to-text transcription 
benchmark task that allows much more rigorous comparisons 
among techniques. 

The baseline GMM-HMM system on the Switchboard task 
was trained using the standard 309-h Switchboard-I training 
set. Thirteen-dimensional PLP features with windowed mean-
variance normalization were concatenated with up to third-
order derivatives and reduced to 39 dimensions by a form of 
linear discriminant analysis (LDA) called heteroscedastic LDA 
(HDLA). The SI crossword triphones used the common left-to-
right three-state topology and shared 9,304 tied states. 

The baseline GMM-HMM system had a mixture of 40 
Gaussians per (tied) HMM state that were first trained genera-
tively to optimize a maximum likelihood (ML) criterion and 
then refined discriminatively to optimize a boosted maximum-
mutual-information (BMMI) criterion. A seven-hidden-layer 
DBN-DNN with 2,048 units in each layer and full connectivity 
between adjacent layers replaced the GMM in the acoustic 
model. The trigram language model, used for both systems, 
was trained on the training transcripts of the 2,000 h of the 
Fisher corpus and interpolated with a trigram model trained on 
written text. 

The primary test set is the FSH portion of the 6.3-h Spring 
2003 National Institute of Standards and Technology rich 
transcription set (RT03S). Table 2 extracted from the litera-
ture shows a summary of the core results. Using a DNN 
reduced the word error rate (WER) from the 27.4% of the 
baseline GMM-HMM (trained with BMMI) to 18.5%—a 33% 

relative reduction. The DNN-HMM system 
trained on 309 h performs as well as combin-
ing several speaker-adaptive (SA), multipass 
systems that use vocal tract length normal-
ization (VTLN) and nearly seven times as 
much acoustic training data (the 2,000-h 
Fisher corpus) (18.6%; see the last row in 
Table 2). 

Detailed experiments [43] on the Switch -
board task confirmed that the remarkable 
accuracy gains from the DNN-HMM acoustic 
model are due to the direct modeling of tied 
triphone states using the DBN-DNN, the effec-
tive exploitation of neighboring frames by the 
DBN-DNN, and the strong modeling power of 
deeper networks, as was discovered in the Bing 
voice search task [44], [42]. Pretraining the 
DBN-DNN leads to the best results but it is not 

[TABLE 2] COMPARING FIVE DIFFERENT DBN-DNN ACOUSTIC MODELS WITH 
TWO STRONG GMM-HMM BASELINE SYSTEMS THAT ARE DISCRIMINATIVELY 
TRAINED. SI TRAINING ON 309 H OF DATA AND SINGLE-PASS DECODING WERE 
USED FOR ALL MODELS EXCEPT FOR THE GMM-HMM SYSTEM SHOWN ON THE 
LAST ROW WHICH USED SA TRAINING WITH 2,000 H OF DATA AND MULTIPASS 
DECODING INCLUDING HYPOTHESES COMBINATION. IN THE TABLE, “40 MIX” 
MEANS A MIXTURE OF 40 GAUSSIANS PER HMM STATE AND “15.2 NZ” MEANS 
15.2 MILLION, NONZERO WEIGHTS. WERs IN % ARE SHOWN FOR TWO SEPA-
RATE TEST SETS, HUB500-SWB AND RT03S-FSH.

WER

MODELING TECHNIQUE #PARAMS [106] HUB5’00-SWB RT03S-FSH

GMM, 40 MIX DT 309H SI 29.4 23.6 27.4 

NN 1 HIDDEN-LAYER # 4,634 UNITS 43.6 26.0 29.4 

+ 2 # 5 NEIGHBORING FRAMES 45.1 22.4 25.7 

DBN-DNN 7 HIDDEN LAYERS # 2,048 UNITS 45.1 17.1 19.6 

+ UPDATED STATE ALIGNMENT 45.1 16.4 18.6 

+ SPARSIFICATION 15.2 NZ 16.1 18.5 

GMM 72 MIX DT 2000H SA 102.4 17.1 18.6 
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critical: For this task, it provides an absolute WER reduction of 
less than 1% and this gain is even smaller when using five or 
more hidden layers. For underresourced languages that have 
smaller amounts of labeled data, pretraining is likely to be far 
more helpful. 

Further study [45] suggests that feature-engineering tech-
niques such as HLDA and VTLN, commonly used in GMM-
HMMs, are more helpful for shallow neural nets than for 
DBN-DNNs, presumably because DBN-DNNs are able to learn 
appropriate features in their lower layers. 

GOOGLE VOICE INPUT SPEECH RECOGNITION TASK
Google Voice Input transcribes voice search queries, short mes-
sages, e-mails, and user actions from mobile devices. This is a 
large vocabulary task that uses a language model designed for a 
mixture of search queries and 
dictation. 

Google’s full-blown model for 
this task, which was built from a 
very large corpus, uses an SI 
GMM-HMM model composed of 
context-dependent crossword tri-
phone HMMs that have a left-to-
right, three-state topology. This 
model has a total of 7,969 senone states and uses as acoustic 
input PLP features that have been transformed by LDA. Semi-
tied covariances (STCs) are used in the GMMs to model the LDA 
transformed features and BMMI [46] was used to train the 
model discriminatively. 

Jaitly et. al. [47] used this model to obtain approximately 
5,870 h of aligned training data for a DBN-DNN acoustic model 
that predicts the 7,969 HMM state posteriors from the acoustic 
input. The DBN-DNN was loosely based on one of the DBN-
DNNs used for the TIMIT task. It had four hidden layers with 
2,560 fully connected units per layer and a final “softmax” layer 
with 7,969 alternative states. Its input was 11 contiguous 
frames of 40 log filter-bank outputs with no temporal deriva-
tives. Each DBN-DNN layer was pretrained for one epoch as an 
RBM and then the resulting DNN was discriminatively fine-
tuned for one epoch. Weights with magnitudes below a thresh-
old were then permanently set to zero before a further quarter 
epoch of training. One third of the weights in the final network 
were zero. In addition to the DBN-DNN training, sequence-lev-
el discriminative fine-tuning of the neural network was per-
formed using MMI, similar to the method proposed in [37]. 
Model combination was then used to combine results from the 
GMM-HMM system with the DNN-HMM hybrid, using the seg-
mental conditional random field (SCARF) framework [47]. 
Viterbi decoding was done using the Google system [48] with 
modifications to compute the scaled log likelihoods from the 
estimates of the posterior probabilities and the state priors. 
Unlike the other systems, it was observed that for Voice Input it 
was essential to smooth the estimated priors for good perfor-
mance. This smoothing of the priors was performed by rescal-
ing the log priors with a multiplier that was chosen by using a 

grid search to find a joint optimum of the language model 
weight, the word insertion penalty, and the smoothing factor. 

On a test set of anonymized utterances from the live Voice 
Input system, the DBN-DNN-based system achieved a WER of 
12.3%—a 23% relative reduction compared to the best GMM-
based system for this task. MMI sequence discriminative train-
ing gave an error rate of 12.2% and model combination with the 
GMM system 11.8%. 

YOUTUBE SPEECH RECOGNITION TASK
In this task, the goal is to transcribe YouTube data. Unlike the 
mobile voice input applications described above, this application 
does not have a strong language model to constrain the inter-
pretation of the acoustic information so good discrimination 
requires an accurate acoustic model. 

Google’s full-blown baseline, 
built with a much larger training 
set, was used to create approxi-
mately 1,400 h of aligned training 
data. This was used to create a 
new baseline system for which 
the input was nine frames of 
MFCCs that were transformed by 
LDA. SA training was performed, 

and decision tree clustering was used to obtain 17,552 triphone 
states. STCs were used in the GMMs to model the features. The 
acoustic models were further improved with BMMI. During 
decoding, ML linear regression (MLLR) and feature space MLLR 
(fMLLR) transforms were applied. 

The acoustic data used for training the DBN-DNN acoustic 
model were the fMLLR-transformed features. The large number 
of HMM states added significantly to the computational burden, 
since most of the computation is done at the output layer. To 
reduce this burden, the DNN used only four hidden layers with 
2,000 units in the first hidden layer and only 1,000 units in each 
of the layers above. 

About ten epochs of training were performed on this data 
before sequence-level training and model combination. The 
DBN-DNN gave an absolute improvement of 4.7% over the 
baseline system’s WER of 52.3%. Sequence-level fine-tuning of 
the DBN-DNN further improved results by 0.5% and model 
combination produced an additional gain of 0.9%. 

ENGLISH BROADCAST NEWS 
SPEECH RECOGNITION TASK
DNNs have also been successfully applied to an English 
broadcast news task. Since a GMM-HMM baseline creates the 
initial training labels for the DNN, it is important to have a 
good baseline system. All GMM-HMM systems created at IBM 
use the following recipe to produce a state-of-the-art base-
line system. First, SI features are created, followed by 
SA-trained (SAT) and DT features. Specifically, given initial 
PLP features, a set of SI features are created using LDA. 
Further processing of LDA features is performed to create 
SAT features using VTLN followed by fMLLR. Finally, feature 

PRETRAINING DNNs AS
GENERATIVE MODELS LED TO BETTER 

RECOGNITION RESULTS ON TIMIT 
AND SUBSEQUENTLY ON A VARIETY 

OF LVCSR TASKS.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE   [92]   NOVEMBER 2012

and model-space discriminative training is applied using the 
BMMI or MPE criterion. 

Using alignments from a baseline system, [32] trained a 
DBN-DNN acoustic model on 50 h of data from the 1996 and 
1997 English Broadcast News Speech Corpora [37]. The 
 DBN-DNN was trained with the 
best-performing LVCSR features, 
specifically the SAT+DT features. 
The DBN-DNN architecture con-
sisted of six hidden layers with 
1,024 units per layer and a final 
softmax layer of 2,220 context-
dependent states. The SAT+DT 
feature input into the first layer 
used a context of nine frames. 
Pretraining was performed fol-
lowing a recipe similar to [42]. 

Two phases of fine-tuning were performed. During the first 
phase, the cross entropy loss was used. For cross entropy train-
ing, after each iteration through the whole training set, loss is 
measured on a held-out set and the learning rate is annealed 
(i.e., reduced) by a factor of two if the held-out loss has grown 
or improves by less than a threshold of 0.01% from the previ-
ous iteration. Once the learning rate has been annealed five 
times, the first phase of fine-tuning stops. After weights are 
learned via cross entropy, these weights are used as a starting 
point for a second phase of fine-tuning using a sequence crite-
rion [37] that utilizes the MPE objective function, a discrimi-
native objective function similar to MMI [7] but which takes 
into account phoneme error rate. 

A strong SAT+DT GMM-HMM baseline system, which con-
sisted of 2,220 context-dependent states and 50,000 Gaussians, 
gave a WER of 18.8% on the EARS Dev-04f set, whereas the 
DNN-HMM system gave 17.5% [50]. 

SUMMARY OF THE MAIN RESULTS FOR 
DBN-DNN ACOUSTIC MODELS ON LVCSR TASKS
Table 3 summarizes the acoustic modeling results described 
above. It shows that DNN-HMMs consistently outperform 
GMM-HMMs that are trained on the same amount of data, 
sometimes by a large margin. For some tasks, DNN-HMMs 
also outperform GMM-HMMs that are trained on much 
more data. 

SPEEDING UP DNNs AT RECOGNITION TIME
State pruning or Gaussian selection methods can be used to 
make GMM-HMM systems computationally efficient at recogni-
tion time. A DNN, however, uses virtually all its parameters at 
every frame to compute state likelihoods, making it potentially 

much slower than a GMM with a 
comparable number of parame-
ters. Fortunately, the time that a 
DNN-HMM system requires to 
recognize 1 s of speech can be 
reduced from 1.6 s to 210 ms, 
without decreasing recognition 
accuracy, by quantizing the 
weights down to 8 b and using 
the very fast SIMD primitives for 
fixed-point computation that are 
provided by a modern x86 cen-

tral processing unit [49]. Alternatively, it can be reduced to 
66 ms by using a graphics processing unit (GPU). 

ALTERNATIVE PRETRAINING METHODS FOR DNNs
Pretraining DNNs as generative models led to better recognition 
results on TIMIT and subsequently on a variety of LVCSR tasks. 
Once it was shown that DBN-DNNs could learn good acoustic 
models, further research revealed that they could be trained in 
many different ways. It is possible to learn a DNN by starting with 
a shallow neural net with a single hidden layer. Once this net has 
been trained discriminatively, a second hidden layer is interposed 
between the first hidden layer and the softmax output units and 
the whole network is again discriminatively trained. This can be 
continued until the desired number of hidden layers is reached, 
after which full backpropagation fine-tuning is applied. 

This type of discriminative pretraining works well in prac-
tice, approaching the accuracy achieved by generative DBN pre-
training and further improvement can be achieved by stopping 
the discriminative pretraining after a single epoch instead of 
multiple epochs as reported in [45]. Discriminative pretraining 
has also been found effective for the architectures called “deep 
convex network” [51] and “deep stacking network” [52], where 
pretraining is accomplished by convex optimization involving 
no generative models. 

Purely discriminative training of the whole DNN from ran-
dom initial weights works much better than had been thought, 

provided the scales of the initial 
weights are set carefully, a large 
amount of labeled training data is 
available, and minibatch sizes over 
training epochs are set appropri-
ately [45], [53]. Nevertheless, gen-
erative pretraining still improves 
test performance, sometimes by a 
significant amount. 

Layer-by-layer generative pre-
training was originally done 
using RBMs, but various types of 

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND 
GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

TASK 
HOURS OF 
TRAINING DATA DNN-HMM

GMM-HMM 
WITH SAME DATA

GMM-HMM 
WITH MORE DATA

SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H) 

SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1 (2,000 H) 

ENGLISH BROADCAST NEWS 50 17.5 18.8 

BING VOICE SEARCH 
(SENTENCE ERROR RATES) 24 30.4 36.2 

GOOGLE VOICE INPUT 5,870 12.3 16.0 (22 5,870 H)

YOUTUBE 1,400 47.6 52.3 

DISCRIMINATIVE PRETRAINING
HAS ALSO BEEN FOUND EFFECTIVE 
FOR THE ARCHITECTURES CALLED 
“DEEP CONVEX NETWORK”  AND 

“DEEP STACKING NETWORK,” WHERE 
PRETRAINING IS ACCOMPLISHED BY 
CONVEX OPTIMIZATION INVOLVING 

NO GENERATIVE MODELS.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE   [93]   NOVEMBER 2012

 autoencoder with one hidden layer can also be used (see Fig -
ure 2). On vision tasks, performance similar to RBMs can be 
achieved by pretraining with “denoising” autoencoders [54] 
that are regularized by setting a subset of the inputs to zero or 
“contractive” autoencoders [55] that are regularized by penal-
izing the gradient of the activities of the hidden units with 
respect to the inputs. For speech 
recognition, im  proved perfor-
mance was achieved on both 
TIMIT and Broadcast News tasks 
by pretraining with a type of 
autoencoder that tries to find 
sparse codes [56]. 

ALTERNATIVE FINE-TUNING 
METHODS FOR DNNs
Very large GMM acoustic models 
are trained by making use of the parallelism available in com-
pute clusters. It is more difficult to use the parallelism of cluster 
systems effectively when training DBN-DNNs. At present, the 
most effective parallelization method is to parallelize the matrix 
operations using a GPU. This gives a speed-up of between one 
and two orders of magnitude, but the fine-tuning stage remains 
a serious bottleneck, and more effective ways of parallelizing 
training are needed. Some recent attempts are described in [52] 
and [57]. 

Most DBN-DNN acoustic models are fine-tuned by applying 
stochastic gradient descent with momentum to small mini-
batches of training cases. More sophisticated optimization 
methods that can be used on larger minibatches include nonlin-
ear conjugate-gradient [17], LBFGS [58], and “Hessian-free” 
methods adapted to work for DNNs [59]. However, the fine-tun-
ing of DNN acoustic models is typically stopped early to prevent 
overfitting, and it is not clear that the more sophisticated meth-
ods are worthwhile for such incomplete optimization. 

OTHER WAYS OF USING DEEP NEURAL 
NETWORKS FOR SPEECH RECOGNITION
The previous section reviewed experiments in which GMMs 
were replaced by DBN-DNN acoustic models to give hybrid 
DNN-HMM systems in which the posterior probabilities over 
HMM states produced by the DBN-DNN replace the GMM out-
put model. In this section, we describe two other ways of using 
DNNs for speech recognition. 

USING DBN-DNNs TO PROVIDE 
INPUT FEATURES FOR GMM-HMM SYSTEMS
Here we describe a class of methods where neural networks are 
used to provide the feature vectors that the GMM in a GMM-
HMM system is trained to model. The most common approach 
to extracting these feature vectors is to discriminatively train a 
randomly initialized neural net with a narrow bottleneck mid-
dle layer and to use the activations of the bottleneck hidden 
units as features. For a summary of such methods, commonly 
known as the tandem approach, see [60], [61], and [63]. 

Instead of replacing the coefficients usually modeled by 
GMMs, neural networks can also be used to provide additional 
features for the GMM to model [8], [9], [63]. DBN-DNNs have 
recently been shown to be very effective in such tandem sys-
tems. On the Aurora2 test set, pretraining decreased WERs by 
more than one third for speech with signal-to-noise levels of 

20 dB or more, though this effect 
almost disappeared for very high 
noise levels [64]. 

Recently, [62] investigated a 
less direct way of producing fea-
ture vectors for the GMM. First, 
a DNN with six hidden layers of 
1,024 units each was trained to 
achieve good classification accu-
racy for the 384 HMM states rep-
resented in its softmax output 

layer. This DNN did not have a bottleneck layer and was there-
fore able to classify better than a DNN with a bottleneck. Then 
the 384 logits computed by the DNN as input to its softmax 
layer were compressed down to 40 values using a 384-128-40-
384 autoencoder. This method of producing feature vectors is 
called AE-BN because the bottleneck is in the autoencoder rath-
er than in the DNN that is trained to classify HMM states. 

Bottleneck feature experiments were conducted on 50-h and 
430-h of data from the 1996 and 1997 English Broadcast News 
Speech collections and English broadcast audio from TDT-4. 
The baseline GMM-HMM acoustic model trained on 50 h was 
the same acoustic model described in the section “English 
Broadcast News Speech Recognition Task.” The acoustic model 
trained on 430-h had 6,000 states and 150,000 Gaussians. Again, 
the standard IBM LVCSR recipe described in the aforementioned 
section was used to create a set of SA DT features and models. 

All DBN-DNNs used SAT features as input. They were pre-
trained as DBNs and then discriminatively fine-tuned to predict 
target values for 384 HMM states that were obtained by cluster-
ing the context-dependent states in the baseline GMM-HMM 
system. As in the section “English Broadcast News Speech 
Recognition Task,” the DBN-DNN was trained using the cross 
entropy criterion, followed by the sequence criterion with the 
same annealing and stopping rules. 

THE FINE-TUNING OF DNN ACOUSTIC 
MODELS IS TYPICALLY STOPPED 

EARLY TO PREVENT OVERFITTING, 
AND IT IS NOT CLEAR THAT THE 

MORE SOPHISTICATED METHODS 
ARE WORTHWHILE FOR SUCH 
INCOMPLETE OPTIMIZATION.

Code Units Output UnitsInput Units

[FIG2] An autoencoder is trained to minimize the discrepancy 
between the input vector and its reconstruction of the input 
vector on its output units. If the code units and the output units 
are both linear and the discrepancy is the squared reconstruction 
error, an autoencoder finds the same solution as principal 
components analysis (PCA) (up to a rotation of the components). 
If the output units and the code units are logistic, an 
autoencoder is quite similar to an RBM that is trained using CD, 
but it does not work as well for pretraining DNNs unless it is 
strongly regularized in an appropriate way. If extra hidden layers 
are added before and/or after the code layer, an autoencoder 
can compress data much better than PCA [17].
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After the training of the first DBN-DNN terminated, the final 
set of weights was used for generating the 384 logits at the out-
put layer. A second 384-128-40-384 DBN-DNN was then trained 
as an autoencoder to reduce the dimensionality of the output 
logits. The GMM-HMM system that used the feature vectors 
produced by the AE-BN was trained using feature and model 
space discriminative training. Both pretraining and the use of 
deeper networks made the AE-BN features work better for rec-
ognition. To fairly compare the performance of the system that 
used the AE-BN features with the baseline GMM-HMM system, 
the acoustic model of the AE-BN features was trained with the 
same number of states and Gaussians as the baseline system. 

Table 4 shows the results of 
the AE-BN and baseline systems 
on both 50- and 430-h, for dif-
ferent steps in the LVCSR recipe 
described in the section “English 
Broadcast News Speech Rec -
ognition Task.” On 50-h, the 
AE-BN system offers a 1.3% absolute improvement over the 
baseline GMM-HMM system, which is the same improvement 
as the DBN-DNN, while on 430-h the AE-BN system provides a 
0.5% improvement over the baseline. The 17.5% WER is the 
best result to date on the Dev-04f task, using an acoustic model 
trained on 50 h of data. Finally, the complementarity of the 
AE-BN and baseline  methods is explored by performing model 
combination on both the 50- and 430-h tasks. Table 4 shows 
that model-combination provides an additional 1.1% absolute 
improvement over individual systems on the 50-h task, and a 
0.5% absolute improvement over the individual systems on the 
430-h task, confirming the complementarity of the AE-BN and 
baseline systems. 

USING DNNs TO ESTIMATE ARTICULATORY FEATURES 
FOR DETECTION-BASED SPEECH RECOGNITION
A recent study [65] demonstrated the effectiveness of DBN-
DNNs for detecting subphonetic speech attributes (also known 
as phonological or articulatory features [66]) in the widely 
used The Wall Street Journal speech database (5k-WSJ0). 
Thirteen MFCCs plus first- and second-temporal derivatives 
were used as the short-time spectral representation of the 
speech signal. The phone labels were derived from the forced 
alignments generated using a GMM-HMM system trained with 
ML, and that HMM system had 2,818 tied-state, crossword tri-

phones, each modeled by a mixture of eight Gaussians. The 
attribute labels were generated by mapping phone labels to 
attributes, simplifying the overlapping characteristics of the 
articulatory features. The 22 attributes used in the recent 
work, as reported in [65], are a subset of the articulatory fea-
tures explored in [66] and [67]. 

DBN-DNNs achieved less than half the error rate of shallow 
neural nets with a single hidden layer. DNN architectures with 
five to seven hidden layers and up to 2,048 hidden units per 
layer were explored, producing greater than 90% frame-level 
accuracy for all 21 attributes tested in the full DNN system. On 
the same data, DBN-DNNs also achieved a very high per frame 

phone classification accuracy of 
86.6%. This level of accuracy for 
detecting subphonetic funda-
mental speech units may allow a 
new family of flexible speech 
 recognition and understanding 
systems that make use of phono-

logical features in the full detection-based framework dis-
cussed in [65]. 

SUMMARY AND FUTURE DIRECTIONS
When GMMs were first used for acoustic modeling, they were 
trained as generative models using the EM algorithm, and it 
was some time before researchers showed that significant gains 
could be achieved by a subsequent stage of discriminative train-
ing using an objective function more closely related to the ulti-
mate goal of an ASR system [7], [68]. When neural nets were 
first used, they were trained discriminatively. It was only recent-
ly that researchers showed that significant gains could be 
achieved by adding an initial stage of generative pretraining that 
completely ignores the ultimate goal of the system. The pre-
training is much more helpful in deep neural nets than in shal-
low ones, especially when limited amounts of labeled training 
data are available. It reduces overfitting, and it also reduces the 
time required for discriminative fine-tuning with backpropaga-
tion, which was one of the main impediments to using DNNs 
when neural networks were first used in place o f GMMs in the 
1990s. The successes achieved using pretraining led to a resur-
gence of interest in DNNs for acoustic modeling. 
Retrospectively, it is now clear that most of the gain comes from 
using DNNs to exploit information in neighboring fram es and 
from modeling tied context-dependent states. Pretraining is 
helpful in reducing overfitting, and it does reduce the time 
taken for fine-tuning, but similar reductio ns in training time 
can be achieved with less effort by careful choice of the scales of 
the initial random weights in e ach layer. 

The first method to be used for pretraining DNNs was to 
learn a stack of RBMs, one per hidden  layer of the DNN. An 
RBM is an undirected generative model that uses binary latent 
variables, but training  it by ML is expensive, so a much faster, 
approximate method called CD is used. This method has strong 
similarities to training an autoencod er network (a nonlinear 
version of PCA) that converts each datapoint into a code from 

THE SUCCESSES ACHIEVED USING 
PRETRAINING LED TO A RESURGENCE 

OF INTEREST IN DNNS FOR 
ACOUSTIC MODELING.

[TABLE 4] WER IN % ON ENGLISH BROADCAST NEWS.

50 H 430 H

LVCSR STAGE 
GMM-HMM 
BASELINE AE-BN

GMM/HMM 
BASELINE AE-BN

FSA 24.8 20.6 20.2 17.6 

+fBMMI 20.7 19.0 17.7 16.6 

+BMMI 19.6 18.1 16.5 15.8 

+MLLR 18.8 17.5 16.0 15.5 

MODEL COMBINATION 16.4 15.0
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which it is easy to approximately reconstruct the datapoint. 
Subsequent research showed that autoencoder networks with 
one la yer of logistic hidden units also work well for pretraining, 
especially if they are  regularized by adding noise to the inputs 
or by constraining the codes to be insensitive to small changes 
in the  input. RBMs do not require such regularization because 
the Bernoulli noise introduced by using stochastic binary hid-
den units acts as a very st rong regularizer [21]. 

We have described how three major speech research groups 
achieved significant improvements in a variety of sta te-of-the-
art ASR systems by replacing GMMs with DNNs, and we believe 
that there is the potential for 
considerable further improve-
ment. Ther e is no reason to 
believe that we are currently 
using the optimal types of hid-
den units or the optimal network 
architectures, and it is  highly 
likely that both the pretraining 
and fine-tuning algorithms can 
be modified to reduce the 
amount of overfitting and the amou nt of computation. We 
therefore expect that the performance gap between acoustic 
models that use DNNs and ones that use GMMs will continue to 
increase for some t ime. 

Currently, the biggest disadvantage of DNNs compared with 
GMMs is that it is much harder to make good use of large clus-
 ter machines to train them on massive data sets. This is offset 
by the fact that DNNs make more efficient use of data so they do 
not require as much data to achieve the same performance, but 
better ways of paralle lizing the fine-tuning of DNNs is still a 
major issue. 
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