
IEEE SIGNAL PROCESSING MAGAZINE [82] NOVEMBER 2012

 Digital Object Identifier 10.1109/MSP.2012.2205597
 Date of publication: 15 October 2012

1053-5888/12/$31.00©2012IEEE

M
ost current speech recognition systems use
hidden Markov models (HMMs) to deal with
the temporal variability of speech and
Gaussian mixture models (GMMs) to deter-
mine how well each state of each HMM fits a

frame or a short window of frames of coefficients that repre-
sents the acoustic input. An alternative way to evaluate the fit
is to use a feed-forward neural network that takes several
frames of coefficients as input and produces posterior proba-

bilities over HMM states as output. Deep neural networks
(DNNs) that have many hidden layers and are trained using
new methods have been shown to outperform GMMs on a vari-
ety of speech recognition benchmarks, sometimes by a large
margin. This article provides an overview of this progress and
represents the shared views of four research groups that have
had recent successes in using DNNs for acoustic modeling in
speech recognition.

INTRODUCTION
New machine learning algorithms can lead to significant
advances in automatic speech recognition (ASR). The biggest

[Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,

Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury]

[The shared views of four research groups]

©
 IS

TO
C

K
P

H
O

TO
.C

O
M

/S
U

C
H

O
A

 L
E

R
TA

D
IP

AT

FUNDAMENTAL TECHNOLOGIES
IN MODERN SPEECH RECOGNITION

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [83] NOVEMBER 2012

single advance occurred nearly
four decades ago with the intro-
duction of the expectation-maxi-
mization (EM) algorithm for
training HMMs (see [1] and [2]
for informative historical reviews
of the introduction of HMMs).
With the EM algorithm, it be -
came possible to develop speech
recognition systems for real-
world tasks using the richness of GMMs [3] to represent the
relationship between HMM states and the acoustic input. In
these systems the acoustic input is typically represented by con-
catenating Mel-frequency cepstral coefficients (MFCCs) or per-
ceptual linear predictive coefficients (PLPs) [4] computed from
the raw waveform and their first- and second-order temporal
differences [5]. This nonadaptive but highly engineered prepro-
cessing of the waveform is designed to discard the large amount
of information in waveforms that is considered to be irrelevant
for discrimination and to express the remaining information in
a form that facilitates discrimination with GMM-HMMs.

GMMs have a number of advantages that make them suit-
able for modeling the probability distributions over vectors of
input features that are associated with each state of an HMM.
With enough components, they can model probability distri-
butions to any required level of accuracy, and they are fairly
easy to fit to data using the EM algorithm. A huge amount of
research has gone into finding ways of constraining GMMs to
increase their evaluation speed and to optimize the tradeoff
between their flexibility and the amount of training data
required to avoid serious overfitting [6].

The recognition accuracy of a GMM-HMM system can be
further improved if it is discriminatively fine-tuned after it has
been generatively trained to maximize its probability of gener-
ating the observed data, especially if the discriminative objec-
tive function used for training is closely related to the error
rate on phones, words, or sentences [7]. The accuracy can also
be improved by augmenting (or concatenating) the input fea-
tures (e.g., MFCCs) with “tandem” or bottleneck features gen-
erated using neural networks [8], [69]. GMMs are so successful
that it is difficult for any new method to outperform them for
acoustic modeling.

Despite all their advantages, GMMs have a serious short-
coming—they are statistically inefficient for modeling data
that lie on or near a nonlinear manifold in the data space. For
example, modeling the set of points that lie very close to the
surface of a sphere only requires a few parameters using an
appropriate model class, but it requires a very large number of
diagonal Gaussians or a fairly large number of full-covariance
Gaussians. Speech is produced by modulating a relatively
small number of parameters of a dynamical system [10], [11],
and this implies that its true underlying structure is much
lower-dimensional than is immediately apparent in a window
that contains hundreds of coefficients. We believe, therefore,
that other types of model may work better than GMMs for

acoustic modeling if they can
more effectively exploit informa-
tion embedded in a large win-
dow of frames.

Artificial neural networks
trained by backpropagating
error derivatives have the poten-
tial to learn much better models
of data that lie on or near a non-
linear manifold. In fact, two

decades ago, researchers achieved some success using artificial
neural networks with a single layer of nonlinear hidden units
to predict HMM states from windows of acoustic coefficients
[9]. At that time, however, neither the hardware nor the learn-
ing algorithms were adequate for training neural networks
with many hidden layers on large amounts of data, and the
performance benefits of using neural networks with a single
hidden layer were not sufficiently large to seriously challenge
GMMs. As a result, the main practical contribution of neural
networks at that time was to provide extra features in tandem
or bottleneck systems.

Over the last few years, advances in both machine learning
algorithms and computer hardware have led to more efficient
methods for training DNNs that contain many layers of non-
linear hidden units and a very large output layer. The large
output layer is required to accommodate the large number of
HMM states that arise when each phone is modeled by a num-
ber of different “triphone” HMMs that take into account the
phones on either side. Even when many of the states of these
triphone HMMs are tied together, there can be thousands of
tied states. Using the new learning methods, several different
research groups have shown that DNNs can outperform GMMs
at acoustic modeling for speech recognition on a variety of
data sets including large data sets with large vocabularies.

This review article aims to represent the shared views of
research groups at the University of Toronto, Microsoft Research
(MSR), Google, and IBM Research, who have all had recent suc-
cesses in using DNNs for acoustic modeling. The article starts by
describing the two-stage training procedure that is used for fit-
ting the DNNs. In the first stage, layers of feature detectors are
initialized, one layer at a time, by fitting a stack of generative
models, each of which has one layer of latent variables. These
generative models are trained without using any information
about the HMM states that the acoustic model will need to dis-
criminate. In the second stage, each generative model in the
stack is used to initialize one layer of hidden units in a DNN and
the whole network is then discriminatively fine-tuned to predict
the target HMM states. These targets are obtained by using a
baseline GMM-HMM system to produce a forced alignment.

In this article, we review exploratory experiments on the
TIMIT database [12], [13] that were used to demonstrate the
power of this two-stage training procedure for acoustic mod-
eling. The DNNs that worked well on TIMIT were then applied
to five different large-vocabulary continuous speech recogni-
tion (LVCSR) tasks by three different research groups whose

DEEP NEURAL NETWORKS THAT HAVE
MANY HIDDEN LAYERS AND ARE

TRAINED USING NEW METHODS HAVE
BEEN SHOWN TO OUTPERFORM
GMMs ON A VARIETY OF SPEECH

RECOGNITION BENCHMARKS,
SOMETIMES BY A LARGE MARGIN.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [84] NOVEMBER 2012

results we also summarize. The DNNs worked well on all of
these tasks when compared with highly tuned GMM-HMM
systems, and on some of the tasks they outperformed the state
of the art by a large margin. We
also describe some other uses of
DNNs for acoustic modeling and
some variations on the training
procedure.

TRAINING DEEP NEURAL
NETWORKS
A DNN is a feed-forward, artificial
neural network that has more than one layer of hidden units
between its inputs and its outputs. Each hidden unit, j, typically
uses the logistic function (the closely related hyberbolic tangent
is also often used and any function with a well-behaved deriva-
tive can be used) to map its total input from the layer below,
x ,j to the scalar state, y j that it sends to the layer above.

 () ,y x
e

x b y w
1

1logistic ,j j x j j i ij
i

j
= =

+
= +

-
/ (1)

where b j is the bias of unit j, i is an index over units in the
layer below, and wij is the weight on a connection to unit j
from unit i in the layer below. For multiclass classification,
output unit j converts its total input, x j , into a class probabil-
ity, p j , by using the “softmax” nonlinearity

()

()
,

exp
exp

p
x

x
j

k
k

j
=
/

 (2)

where k is an index over all classes.
DNNs can be discriminatively trained (DT) by backpropa-

gating derivatives of a cost function that measures the discrep-
ancy between the target outputs and the actual outputs
produced for each training case [14]. When using the softmax
output function, the natural cost function C is the cross entro-
py between the target probabilities d and the outputs of the
softmax, p

 ,logC d pj j
j

=-/ (3)

where the target probabilities, typically taking values of one or
zero, are the supervised information provided to train the
DNN classifier.

For large training sets, it is typically more efficient to com-
pute the derivatives on a small, random “minibatch” of training
cases, rather than the whole training set, before updating the
weights in proportion to the gradient. This stochastic gradient
descent method can be further improved by using a “momen-
tum” coefficient, 0 11 1a , that smooths the gradient comput-
ed for minibatch t, thereby damping oscillations across ravines
and speeding progress down ravines

 () (1)
()

.w t w t
w t

C
ij ij

ij
a eD D

2
2

= - - (4)

The update rule for biases can be derived by treating them as
weights on connections coming from units that always have a
state of one.

To reduce overfitting, large
weights can be penalized in propor-
tion to their squared magnitude, or
the learning can simply be termi-
nated at the point at which perfor-
mance on a held-out validation set
starts getting worse [9]. In DNNs
with full connectivity between adja-
cent layers, the initial weights are

given small random values to prevent all of the hidden units in a
layer from getting exactly the same gradient.

DNNs with many hidden layers are hard to optimize.
Gradient descent from a random starting point near the origin
is not the best way to find a good set of weights, and unless the
initial scales of the weights are carefully chosen [15], the back-
propagated gradients will have very different magnitudes in dif-
ferent layers. In addition to the optimization issues, DNNs may
generalize poorly to held-out test data. DNNs with many hidden
layers and many units per layer are very flexible models with a
very large number of parameters. This makes them capable of
modeling very complex and highly nonlinear relationships
between inputs and outputs. This ability is important for high-
quality acoustic modeling, but it also allows them to model spu-
rious regularities that are an accidental property of the
particular examples in the training set, which can lead to severe
overfitting. Weight penalties or early stopping can reduce the
overfitting but only by removing much of the modeling power.
Very large training sets [16] can reduce overfitting while pre-
serving modeling power, but only by making training very com-
putationally expensive. What we need is a better method of
using the information in the training set to build multiple lay-
ers of nonlinear feature detectors.

GENERATIVE PRETRAINING
Instead of designing feature detectors to be good for discrimi-
nating between classes, we can start by designing them to be
good at modeling the structure in the input data. The idea is to
learn one layer of feature detectors at a time with the states of
the feature detectors in one layer acting as the data for training
the next layer. After this generative “pretraining,” the multiple
layers of feature detectors can be used as a much better start-
ing point for a discriminative “fine-tuning” phase during which
backpropagation through the DNN slightly adjusts the weights
found in pretraining [17]. Some of the high-level features cre-
ated by the generative pretraining will be of little use for dis-
crimination, but others will be far more useful than the raw
inputs. The generative pretraining finds a region of the weight-
space that allows the discriminative fine-tuning to make rapid
progress, and it also significantly reduces overfitting [18].

A single layer of feature detectors can be learned by fitting a
generative model with one layer of latent variables to the input
data. There are two broad classes of generative model to choose

OVER THE LAST FEW YEARS,
ADVANCES IN BOTH MACHINE
LEARNING ALGORITHMS AND
COMPUTER HARDWARE HAVE

LED TO MORE EFFICIENT METHODS
FOR TRAINING DNNs.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [85] NOVEMBER 2012

from. A directed model generates data by first choosing the
states of the latent variables from a prior distribution and then
choosing the states of the observable variables from their condi-
tional distributions given the latent states. Examples of directed
models with one layer of latent variables are factor analysis, in
which the latent variables are drawn from an isotropic
Gaussian, and GMMs, in which they are drawn from a discrete
distribution. An undirected model has a very different way of
generating data. Instead of using one set of parameters to define
a prior distribution over the latent variables and a separate set
of parameters to define the condition-
al distributions of the observable vari-
ables given the values of the latent
variables, an undirected model uses a
single set of parameters, W, to define
the joint probability of a vector of val-
ues of the observable variables, v, and
a vector of values of the latent vari-
ables, h, via an energy function, E

 v h W(, ;) , ,p
Z

e Z e1 v h W v h W

v h

(, ;) (, ;)

,

E E= =- - l l

l l

/ (5)

where Z is called the partition function.
If many different latent variables interact nonlinearly to

generate each data vector, it is difficult to infer the states of
the latent variables from the observed data in a directed
model because of a phenomenon known as “explaining away”
[19]. In undirected models, however, inference is easy pro-
vided the latent variables do not have edges linking them.
Such a restricted class of undirected models is ideal for lay-
erwise pretraining because each layer will have an easy infer-
ence procedure.

We start by describing an approximate learning algorithm
for a restricted Boltzmann machine (RBM) which consists of a
layer of stochastic binary “visible” units that represent binary
input data connected to a layer of stochastic binary hidden units
that learn to model significant nonindependencies between the
visible units [20]. There are undirected connections between
visible and hidden units but no visible-visible or hidden-hidden
connections. An RBM is a type of Markov random field (MRF)
but differs from most MRFs in several ways: it has a bipartite
connectivity graph, it does not usually share weights between
different units, and a subset of the variables are unobserved,
even during training.

AN EFFICIENT LEARNING PROCEDURE FOR RBMs
A joint configuration, (v, h) of the visible and hidden units of an
RBM has an energy given by

 v h()E a v b h v h w, i i
i

j j
j

i j ij
visible hidden ,i j

=- - -
! !

/ / / , (6)

where ,v hi j are the binary states of visible unit i and hidden
unit j, ,a bi j are their biases, and wij is the weight between
them. The network assigns a probability to every possible pair of
a visible and a hidden vector via this energy function as in (5)

and the probability that the network assigns to a visible vector,
v, is given by summing over all possible hidden vectors

 v()p
Z

e1
h

v, h()E= -/ . (7)

The derivative of the log probability of a training set with
respect to a weight is surprisingly simple

v()log

N w
p

v h v h1
ij

n

n

n N

i j i j
1

data model
2

1 2 1 2
2

= -
=

=

/ , (8)

where N is the size of the
training set and the angle
brackets are used to denote
expectations under the dis-
tribution specified by the
subscript that follows. The
simple derivative in (8)
leads to a very simple learn-
ing rule for performing sto-

chastic steepest ascent in the log probability of the training data

 w v h v hdata modelij i j i j1 2 1 2eD = -^ h, (9)

where e is a learning rate.
The absence of direct connections between hidden units in

an RBM makes it is very easy to get an unbiased sample of
v hi j data1 2 . Given a randomly selected training case, v, the

binary state, h j , of each hidden unit, j, is set to one with prob-
ability

 v(1) ()p h b v wlogisticj j i ij
i

;= = +/ (10)

and v hi j is then an unbiased sample. The absence of direct con-
nections between visible units in an RBM makes it very easy to
get an unbiased sample of the state of a visible unit, given a hid-
den vector

 () () .hp v a h w1 logistici i j ij
j

;= = +/ (11)

Getting an unbiased sample of v hi j model1 2 , however, is
much more difficult. It can be done by starting at any random
state of the visible units and performing alternating Gibbs sam-
pling for a very long time. Alternating Gibbs sampling consists
of updating all of the hidden units in parallel using (10) fol-
lowed by updating all of the visible units in parallel using (11).

A much faster learning procedure called contrastive diver-
gence (CD) was proposed in [20]. This starts by setting the states
of the visible units to a training vector. Then the binary states of
the hidden units are all computed in parallel using (10). Once
binary states have been chosen for the hidden units, a “recon-
struction” is produced by setting each vi to one with a probabil-
ity given by (11). Finally, the states of the hidden units are
updated again. The change in a weight is then given by

 ()w v h v hij i j i jdata recon1 2 1 2eD = - . (12)

WHAT WE NEED IS A BETTER
METHOD OF USING THE INFORMATION

IN THE TRAINING SET TO BUILD
MULTIPLE LAYERS OF NONLINEAR

FEATURE DETECTORS.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [86] NOVEMBER 2012

A simplified version of the same learning rule that uses the
states of individual units instead of pairwise products is used for
the biases.

CD works well even though it is only crudely approximating
the gradient of the log probability
of the training data [20]. RBMs
learn better generative models if
more steps of alternating Gibbs
sampling are used before collecting
the statistics for the second term in
the learning rule, but for the pur-
poses of pretraining feature detec-
tors, more alternations are
generally of little value and all the
results reviewed here were obtained using CD1 which does a sin-
gle full step of alternating Gibbs sampling after the initial
update of the hidden units. To suppress noise in the learning,
the real-valued probabilities rather than binary samples are gen-
erally used for the reconstructions and the subsequent states of
the hidden units, but it is important to use sampled binary val-
ues for the first computation of the hidden states because the
sampling noise acts as a very effective regularizer that prevents
overfitting [21].

MODELING REAL-VALUED DATA
Real-valued data, such as MFCCs, are more naturally modeled
by linear variables with Gaussian noise and the RBM energy
function can be modified to accommodate such variables, giving
a Gaussian–Bernoulli RBM (GRBM)

 v h(,)
()E v a b h v h w

2 i

i i

i
j j

i

i
j ij2

2

vis ,j i jhidv v
=

-
- -

! !

/ / / , (13)

where iv is the standard deviation of the Gaussian noise for vis-
ible unit i.

The two conditional distributions required for CD1 learning
are

 v()p h b v wlogisticj j
i

i
ij

i
;

v
= +c m/ (14)

 h() ,Np a h wv i i j ij
j

ii
2

; v v= +c m/ , (15)

where (,)N 2n v is a Gaussian. Learning the standard devia-
tions of a GRBM is problematic for reasons described in [21], so
for pretraining using CD1, the data are normalized so that each
coefficient has zero mean and unit variance, the standard devia-
tions are set to one when computing ()v hp ; , and no noise is
added to the reconstructions. This avoids the issue of deciding
the right noise level.

STACKING RBMs TO MAKE A DEEP BELIEF NETWORK
After training an RBM on the data, the inferred states of the hid-
den units can be used as data for training another RBM that
learns to model the significant dependencies between the hid-
den units of the first RBM. This can be repeated as many times
as desired to produce many layers of nonlinear feature detectors

that represent progressively more complex statistical structure
in the data. The RBMs in a stack can be combined in a surpris-
ing way to produce [22] a single, multilayer generative model
called a deep belief net (DBN) (not to be confused with a

dynamic Bayesian net, which
is a type of directed model of
temporal data that unfortu-
nately has the same acronym).
Even though each RBM is an
undirected model, the DBN
formed by the whole stack is a
hybrid generative model
whose top two layers are undi-
rected (they are the final RBM

in the stack) but whose lower layers have top-down, directed
connections (see Figure 1).

To understand how RBMs are composed into a DBN, it is
helpful to rewrite (7) and to make explicit the dependence on W:

 v W h W h W(;) (;) (;),vp p p
h

;=/ (16)

where h W(;)p is defined as in (7) but with the roles of the visi-
ble and hidden units reversed. Now it is clear that the model can
be improved by holding v h W(;)p ; fixed after training the RBM,
but replacing the prior over hidden vectors h W(;)p by a better
prior, i.e., a prior that is closer to the aggregated posterior over
hidden vectors that can be sampled by first picking a training
case and then inferring a hidden vector using (14). This aggre-
gated posterior is exactly what the next RBM in the stack is
trained to model.

As shown in [22], there is a series of variational bounds on
the log probability of the training data, and furthermore, each
time a new RBM is added to the stack, the variational bound on
the new and deeper DBN is better than the previous variational
bound, provided the new RBM is initialized and learned in the
right way. While the existence of a bound that keeps improving
is mathematically reassuring, it does not answer the practical
issue, addressed in this article, of whether the learned feature
detectors are useful for discrimination on a task that is
unknown while training the DBN. Nor does it guarantee that
anything improves when we use efficient short-cuts such as
CD1 training of the RBMs.

One very nice property of a DBN that distinguishes it from
other multilayer, directed, nonlinear generative models is that it
is possible to infer the states of the layers of hidden units in a
single forward pass. This inference, which is used in deriving
the variational bound, is not exactly correct but is fairly accu-
rate. So after learning a DBN by training a stack of RBMs, we
can jettison the whole probabilistic framework and simply use
the generative weights in the reverse direction as a way of ini-
tializing all the feature detecting layers of a deterministic feed-
forward DNN. We then just add a final softmax layer and train
the whole DNN discriminatively. Unfortunately, a DNN that is
pretrained generatively as a DBN is often still called a DBN in
the literature. For clarity, we call it a DBN-DNN.

ONE VERY NICE PROPERTY OF
A DBN THAT DISTINGUISHES IT FROM

OTHER MULTILAYER, DIRECTED,
NONLINEAR GENERATIVE MODELS
IS THAT IT IS POSSIBLE TO INFER THE
STATES OF THE LAYERS OF HIDDEN

UNITS IN A SINGLE FORWARD PASS.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [87] NOVEMBER 2012

INTERFACING A DNN WITH AN HMM
After it has been discriminatively fine-tuned, a DNN outputs
probabilities of the form HMMstate AcousticInput()p ; . But to
compute a Viterbi alignment or to run the forward-backward
algorithm within the HMM framework, we require the likeli-
hood (AcousticInput HMMstate)p ; . The posterior probabilities
that the DNN outputs can be converted into the scaled likeli-
hood by dividing them by the frequencies of the HMM states in
the forced alignment that is used for fine-tuning the DNN [9].
All of the likelihoods produced in this way are scaled by the
same unknown factor of AcousticInput()p , but this has no
effect on the alignment. Although this conversion appears to
have little effect on some recognition tasks, it can be important
for tasks where training labels are highly unbalanced (e.g., with
many frames of silences).

PHONETIC CLASSIFICATION
AND RECOGNITION ON TIMIT
The TIMIT data set provides a simple and convenient way of test-
ing new approaches to speech recognition. The training set is
small enough to make it feasible to try many variations of a new
method and many existing techniques have already been bench-
marked on the core test set, so it is easy to see if a new approach
is promising by comparing it with existing techniques that have
been implemented by their proponents [23]. Experience has
shown that performance improvements on TIMIT do not neces-
sarily translate into performance improvements on large vocab-
ulary tasks with less controlled recording conditions and much
more training data. Nevertheless, TIMIT provides a good start-

ing point for developing a new approach, especially one that
requires a challenging amount of computation.

Mohamed et. al. [12] showed that a DBN-DNN acoustic
model outperformed the best published recognition results on
TIMIT at about the same time as Sainath et. al. [23] achieved a
similar improvement on TIMIT by applying state-of-the-art
techniques developed for large vocabulary recognition.
Subsequent work combined the two approaches by using state-
of-the-art, DT speaker-dependent features as input to the DBN-
DNN [24], but this produced little further improvement,
probably because the hidden layers of the DBN-DNN were
already doing quite a good job of progressively eliminating
speaker differences [25].

The DBN-DNNs that worked best on the TIMIT data formed
the starting point for subsequent experiments on much more
challenging large vocabulary tasks that were too computational-
ly intensive to allow extensive exploration of variations in the
architecture of the neural network, the representation of the
acoustic input, or the training procedure.

For simplicity, all hidden layers always had the same size,
but even with this constraint it was impossible to train all possi-
ble combinations of number of hidden layers [1, 2, 3, 4, 5, 6, 7,
8], number of units per layer [512, 1,024, 2,048, 3,072], and
number of frames of acoustic data in the input layer [7, 11, 15,
17, 27, 37]. Fortunately, the performance of the networks on
the TIMIT core test set was fairly insensitive to the precise
details of the architecture and the results in [13] suggest that
any combination of the numbers in boldface probably has an
error rate within about 2% of the very best combination. This

GRBM

RBM

RBM DBN

DBN-DNN

Copy

Copy

W1

W2

W3 W3

W4 = 0

W2

W1

W3
T

W2
T

W1
T

[FIG1] The sequence of operations used to create a DBN with three hidden layers and to convert it to a pretrained DBN-DNN. First, a
GRBM is trained to model a window of frames of real-valued acoustic coefficients. Then the states of the binary hidden units of the
GRBM are used as data for training an RBM. This is repeated to create as many hidden layers as desired. Then the stack of RBMs is
converted to a single generative model, a DBN, by replacing the undirected connections of the lower level RBMs by top-down, directed
connections. Finally, a pretrained DBN-DNN is created by adding a “softmax” output layer that contains one unit for each possible state
of each HMM. The DBN-DNN is then discriminatively trained to predict the HMM state corresponding to the central frame of the input
window in a forced alignment.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [88] NOVEMBER 2012

robustness is crucial for methods such as DBN-DNNs that have
a lot of tuneable metaparameters. Our consistent finding is that
multiple hidden layers always worked better than one hidden
layer and, with multiple hidden layers, pretraining always
improved the results on both the development and test sets in
the TIMIT task. Details of the learning rates, stopping criteria,
momentum, L2 weight penalties and minibatch size for both
the pretraining and fine-tuning are given in [13].

Table 1 compares DBN-DNNs with a variety of other meth-
ods on the TIMIT core test set. For each type of DBN-DNN the
architecture that performed best on the development set is
reported. All methods use MFCCs as inputs except for the three
marked “fbank” that use log Mel-scale filter-bank outputs.

PREPROCESSING THE WAVEFORM
FOR DEEP NEURAL NETWORKS
State-of-the-art ASR systems do not use filter-bank coefficients
as the input representation because they are strongly correlated
so modeling them well requires either full covariance Gaussians
or a huge number of diagonal Gaussians. MFCCs offer a more
suitable alternative as their individual components are roughly
independent so they are much easier to model using a mixture
of diagonal covariance Gaussians. DBN-DNNs do not require
uncorrelated data and, on the TIMIT database, the work reported
in [13] showed that the best performing DBN-DNNs trained with
filter-bank features had a phone error rate 1.7% lower than the
best performing DBN-DNNs trained with MFCCs (see Table 1).

FINE-TUNING DBN-DNNs TO
OPTIMIZE MUTUAL INFORMATION
In the experiments using TIMIT discussed above, the DNNs
were fine-tuned to optimize the per frame cross entropy
between the target HMM state and the predictions. The transi-
tion parameters and language model scores were obtained from
an HMM-like approach and were trained independently of the

DNN weights. However, it has long been known that sequence
classification criteria, which are more directly correlated with
the overall word or phone error rate, can be very helpful in
improving recognition accuracy [7], [35] and the benefit of
using such sequence classification criteria with shallow neural
networks has already been shown by [36]–[38]. In the more
recent work reported in [31], one popular type of sequence clas-
sification criterion, maximum mutual information (MMI), pro-
posed as early as 1986 [7], was successfully applied to learn
DBN-DNN weights for the TIMIT phone recognition task. MMI
optimizes the conditional probability ()p l v1: 1:T T; of the whole
sequence of labels, l1:T , with length T, given the whole visible
feature utterance v1:T , or equivalently the hidden feature
sequence h1:T extracted by the DNN

 () ()p l v p l h: : : :T T T T1 1 1 1; ;=

()

(,)exp

Z h

l l h
,

:

,

T

ij ij t tt

T
l d tdd

D

t
T

1

11 11 tc z m
=

+-
= ==

` j/ //

 (17)

where the transition feature (,)l lij t t1z - takes on a value of one if
l i1t =- and l jt = , and otherwise takes on a value of zero,
where ijc is the parameter associated with this transition feature,
htd is the dth dimension of the hidden unit value at the tth
frame at the final layer of the DNN, and where D is the number of
units in the final hidden layer. Note the objective function of (17)
derived from mutual information [35] is the same as the condi-
tional likelihood associated with a specialized linear-chain condi-
tional random field. Here, it is the topmost layer of the DNN
below the softmax layer, not the raw speech coefficients of MFCC
or PLP, that provides “features” to the conditional random field.

To optimize the log conditional probability ()p l v: :T
n

T
n

1 1; of the
nth utterance, we take the gradient over the activation parame-
ters kdm , transition parameters ijc , and the lower-layer weights
of the DNN, wij , according to

()

() ()
log p l v

l k p l k v h: :
1:

kd

T
n

T
n

t
n

t

T

t
n

T
n

td
n1 1

12

;
;

m
d

2
= = - =

=

^ h/ (18)

()

,
log p l v

l i l j: :
1

ij

T
n

T
n

t
n

t
n

t

T
1 1

12

;

c
d

2
= = =-

=

^ h6/

 ,p l i l j v :t
n

t
n

T
n

1 1;- = =-^ h@ (19)

()

()
log

w
p l v

p l k v: :

1

1:
ij

T
n

T
n

l t
n

k

K

T
n

kd
t

T
1 1

1
td

2

;
;m m

2
= - =

==

= G//

 (1)h h xtd
n

td
n

ti
n# - . (20)

Note that the gradient () /()log p l v w1: 1:T
n

T
n

ij2;2^ h above can be
viewed as back-propagating the error () (),l k p l k v :t

n
t
n

T
n
1;d = - =

versus () ()l k p l k vt
n

t
n

t
n

;d = - = in the frame-based training
algorithm.

In implementing the above learning algorithm for a DBN-
DNN, the DNN weights can first be fine-tuned to optimize the
per frame cross entropy. The transition parameters can be ini-
tialized from the combination of the HMM transition matrices

[TABLE 1] COMPARISONS AMONG THE REPORTED
SPEAKER-INDEPENDENT (SI) PHONETIC RECOGNITION
ACCURACY RESULTS ON TIMIT CORE TEST SET
WITH 192 SENTENCES.

METHOD PER

CD-HMM [26] 27.3%

AUGMENTED CONDITIONAL RANDOM FIELDS [26] 26.6%

RANDOMLY INITIALIZED RECURRENT NEURAL NETS [27] 26.1%

BAYESIAN TRIPHONE GMM-HMM [28] 25.6%

MONOPHONE HTMS [29] 24.8%

HETEROGENEOUS CLASSIFIERS [30] 24.4%

MONOPHONE RANDOMLY INITIALIZED DNNs (SIX LAYERS) [13] 23.4%

MONOPHONE DBN-DNNs (SIX LAYERS) [13] 22.4%

MONOPHONE DBN-DNNs WITH MMI TRAINING [31] 22.1%

TRIPHONE GMM-HMMs DT W/ BMMI [32] 21.7%

MONOPHONE DBN-DNNs ON FBANK (EIGHT LAYERS) [13] 20.7%

MONOPHONE MCRBM-DBN-DNNs ON FBANK (FIVE LAYERS) [33] 20.5%

MONOPHONE CONVOLUTIONAL DNNs ON FBANK (THREE LAYERS)
[34] 20.0%

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [89] NOVEMBER 2012

and the “phone language” model scores, and can be further
optimized by tuning the transition features while fixing the
DNN weights before the joint optimization. Using the joint opti-
mization with careful scheduling, we observe that the sequential
MMI training can outperform the frame-level training by about
5% relative within the same system in the same laboratory.

CONVOLUTIONAL DNNs FOR
PHONE CLASSIFICATION AND RECOGNITION
All the previously cited work reported phone recognition results
on the TIMIT database. In recognition experiments, the input is
the acoustic input for the whole utterance while the output is
the spoken phonetic sequence. A
decoding process using a phone
language model is used to pro-
duce this output sequence.
Phonetic classification is a differ-
ent task where the acoustic input
has already been labeled with the
correct boundaries between dif-
ferent phonetic units and the
goal is to classify these phones conditioned on the given bound-
aries. In [39], convolutional DBN-DNNs were introduced and
successfully applied to various audio tasks including phone clas-
sification on the TIMIT database. In this model, the RBM was
made convolutional in time by sharing weights between hidden
units that detect the same feature at different times. A max-
pooling operation was then performed, which takes the maxi-
mal activation over a pool of adjacent hidden units that share
the same weights but apply them at different times. This yields
some temporal invariance.

Although convolutional models along the temporal dimen-
sion achieved good classification results [39], applying them to
phone recognition is not straightforward. This is because tem-
poral variations in speech can be partially handled by the
dynamic programing procedure in the HMM component and
those aspects of temporal variation that cannot be adequately
handled by the HMM can be addressed more explicitly and effec-
tively by hidden trajectory models [40].

The work reported in [34] applied local convolutional filters
with max-pooling to the frequency rather than time dimension
of the spectrogram. Sharing-weights and pooling over frequen-
cy was motivated by the shifts in formant frequencies caused by
speaker variations. It provides some speaker invariance while
also offering noise robustness due to the band-limited nature of
the filters. [34] only used weight-sharing and max-pooling
across nearby frequencies because, unlike features that occur at
different positions in images, acoustic features occurring at very
different frequencies are very different.

A SUMMARY OF THE DIFFERENCES
BETWEEN DNNs AND GMMs
Here we summarize the main differences between the DNNs and
GMMs used in the TIMIT experiments described so far in this
article. First, one major element of the DBN-DNN, the RBM,

which serves as the building block for pretraining, is an instance
of “product of experts” [20], in contrast to mixture models that
are a “sum of experts.” Product models have only very recently
been explored in speech processing, e.g., [41]. Mixture models
with a large number of components use their parameters ineffi-
ciently because each parameter only applies to a very small frac-
tion of the data whereas each parameter of a product model is
constrained by a large fraction of the data. Second, while both
DNNs and GMMs are nonlinear models, the nature of the nonlin-
earity is very different. A DNN has no problem modeling multiple
simultaneous events within one frame or window because it can
use different subsets of its hidden units to model different events.

By contrast, a GMM assumes that
each datapoint is generated by a
single component of the mixture
so it has no efficient way of mod-
eling multiple simultaneous
events. Third, DNNs are good at
exploiting multiple frames of
input coefficients whereas GMMs
that use diagonal covariance

matrices benefit much less from multiple frames because they
require decorrelated inputs. Finally, DNNs are learned using sto-
chastic gradient descent, while GMMs are learned using the EM
algorithm or its extensions [35], which makes GMM learning
much easier to parallelize on a cluster machine.

COMPARING DBN-DNNs WITH GMMs
FOR LARGE-VOCABULARY SPEECH RECOGNITION
The success of DBN-DNNs on TIMIT tasks starting in 2009
motivated more ambitious experiments with much larger
vocabularies and more varied speaking styles. In this section,
we review experiments by three different speech groups on five
different benchmark tasks for large-vocabulary speech recogni-
tion. To make DBN-DNNs work really well on large vocabulary
tasks it is important to replace the monophone HMMs used for
TIMIT (and also for early neural network/HMM hybrid systems)
with triphone HMMs that have many thousands of tied states
[42]. Predicting these context-dependent states provides several
advantages over monophone targets. They supply more bits of
information per frame in the labels. They also make it possible
to use a more powerful triphone HMM decoder and to exploit
the sensible classes discovered by the decision tree clustering
that is used to tie the states of different triphone HMMs. Using
context-dependent HMM states, it is possible to outperform
state-of-the-art BMMI trained GMM-HMM systems with a two-
hidden-layer neural network without using any pretraining
[43], though using more hidden layers and pretraining works
even better.

BING-VOICE-SEARCH SPEECH RECOGNITION TASK
The first successful use of acoustic models based on DBN-DNNs
for a large vocabulary task used data collected from the Bing
mobile voice search application (BMVS). The task used 24 h of
training data with a high degree of acoustic variability caused by

THE SUCCESS OF DBN-DNNs ON TIMIT
TASKS STARTING IN 2009 MOTIVATED

MORE AMBITIOUS EXPERIMENTS WITH
MUCH LARGER VOCABULARIES AND

MORE VARIED SPEAKING STYLES.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [90] NOVEMBER 2012

noise, music, side-speech, accents, sloppy pronunciation, hesita-
tion, repetition, interruptions, and mobile phone differences.
The results reported in [42] demonstrated that the best DNN-
HMM acoustic model trained with context-dependent states as
targets achieved a sentence accuracy of 69.6% on the test set,
compared with 63.8% for a strong, minimum phone error
(MPE)-trained GMM-HMM baseline.

The DBN-DNN used in the experiments was based on one of
the DBN-DNNs that worked well for the TIMIT task. It used five
pretrained layers of hidden units with 2,048 units per layer and
was trained to classify the central frame of an 11-frame acoustic
context window using 761 possible context-dependent states as
targets. In addition to demonstrating that a DBN-DNN could
provide gains on a large vocabulary task, several other impor-
tant issues were explicitly investigated in [42]. It was found that
using tied triphone context-dependent state targets was crucial
and clearly superior to using monophone state targets, even
when the latter were derived from the same forced alignment
with the same baseline. It was also confirmed that the lower the
error rate of the system used during forced alignment to gener-
ate frame-level training labels for the neural net, the lower the
error rate of the final neural-net-based system. This effect was
consistent across all the alignments they tried, including mono-
phone alignments, alignments from ML-trained GMM-HMM
systems, and alignments from DT GMM-HMM systems.

Further work after that of [42] extended the DNN-HMM
acoustic model from 24 h of training data to 48 h and explored
the respective roles of pretraining and fine-tuning the DBN-
DNN [44]. As expected, pretraining is helpful in training the
DBN-DNN because it initializes the DBN-DNN weights to a
point in the weight-space from which fine-tuning is highly effec-
tive. However, a moderate increase of the amount of unlabeled
pretraining data has an insignificant effect on the final recogni-
tion results (69.6% to 69.8%), as long as the original training
set is fairly large. By contrast, the same amount of additional
labeled fine-tuning training data significantly improves the per-
formance of the DNN-HMMs (accuracy from 69.6% to 71.7%).

SWITCHBOARD SPEECH RECOGNITION TASK
The DNN-HMM training recipe developed for the Bing voice
search data was applied unaltered to the Switchboard speech rec-
ognition task [43] to confirm the suitability of DNN-HMM acous-
tic models for large vocabulary tasks. Before this work,
DNN-HMM acoustic models had only been trained with up to
48 h of data [44] and hundreds of tied triphone states as targets,
whereas this work used over 300 h of training data and thou-
sands of tied triphone states as targets. Furthermore,
Switchboard is a publicly available speech-to-text transcription
benchmark task that allows much more rigorous comparisons
among techniques.

The baseline GMM-HMM system on the Switchboard task
was trained using the standard 309-h Switchboard-I training
set. Thirteen-dimensional PLP features with windowed mean-
variance normalization were concatenated with up to third-
order derivatives and reduced to 39 dimensions by a form of
linear discriminant analysis (LDA) called heteroscedastic LDA
(HDLA). The SI crossword triphones used the common left-to-
right three-state topology and shared 9,304 tied states.

The baseline GMM-HMM system had a mixture of 40
Gaussians per (tied) HMM state that were first trained genera-
tively to optimize a maximum likelihood (ML) criterion and
then refined discriminatively to optimize a boosted maximum-
mutual-information (BMMI) criterion. A seven-hidden-layer
DBN-DNN with 2,048 units in each layer and full connectivity
between adjacent layers replaced the GMM in the acoustic
model. The trigram language model, used for both systems,
was trained on the training transcripts of the 2,000 h of the
Fisher corpus and interpolated with a trigram model trained on
written text.

The primary test set is the FSH portion of the 6.3-h Spring
2003 National Institute of Standards and Technology rich
transcription set (RT03S). Table 2 extracted from the litera-
ture shows a summary of the core results. Using a DNN
reduced the word error rate (WER) from the 27.4% of the
baseline GMM-HMM (trained with BMMI) to 18.5%—a 33%

relative reduction. The DNN-HMM system
trained on 309 h performs as well as combin-
ing several speaker-adaptive (SA), multipass
systems that use vocal tract length normal-
ization (VTLN) and nearly seven times as
much acoustic training data (the 2,000-h
Fisher corpus) (18.6%; see the last row in
Table 2).

Detailed experiments [43] on the Switch -
board task confirmed that the remarkable
accuracy gains from the DNN-HMM acoustic
model are due to the direct modeling of tied
triphone states using the DBN-DNN, the effec-
tive exploitation of neighboring frames by the
DBN-DNN, and the strong modeling power of
deeper networks, as was discovered in the Bing
voice search task [44], [42]. Pretraining the
DBN-DNN leads to the best results but it is not

[TABLE 2] COMPARING FIVE DIFFERENT DBN-DNN ACOUSTIC MODELS WITH
TWO STRONG GMM-HMM BASELINE SYSTEMS THAT ARE DISCRIMINATIVELY
TRAINED. SI TRAINING ON 309 H OF DATA AND SINGLE-PASS DECODING WERE
USED FOR ALL MODELS EXCEPT FOR THE GMM-HMM SYSTEM SHOWN ON THE
LAST ROW WHICH USED SA TRAINING WITH 2,000 H OF DATA AND MULTIPASS
DECODING INCLUDING HYPOTHESES COMBINATION. IN THE TABLE, “40 MIX”
MEANS A MIXTURE OF 40 GAUSSIANS PER HMM STATE AND “15.2 NZ” MEANS
15.2 MILLION, NONZERO WEIGHTS. WERs IN % ARE SHOWN FOR TWO SEPA-
RATE TEST SETS, HUB500-SWB AND RT03S-FSH.

WER

MODELING TECHNIQUE #PARAMS [106] HUB5’00-SWB RT03S-FSH

GMM, 40 MIX DT 309H SI 29.4 23.6 27.4

NN 1 HIDDEN-LAYER # 4,634 UNITS 43.6 26.0 29.4

+ 2 # 5 NEIGHBORING FRAMES 45.1 22.4 25.7

DBN-DNN 7 HIDDEN LAYERS # 2,048 UNITS 45.1 17.1 19.6

+ UPDATED STATE ALIGNMENT 45.1 16.4 18.6

+ SPARSIFICATION 15.2 NZ 16.1 18.5

GMM 72 MIX DT 2000H SA 102.4 17.1 18.6

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [91] NOVEMBER 2012

critical: For this task, it provides an absolute WER reduction of
less than 1% and this gain is even smaller when using five or
more hidden layers. For underresourced languages that have
smaller amounts of labeled data, pretraining is likely to be far
more helpful.

Further study [45] suggests that feature-engineering tech-
niques such as HLDA and VTLN, commonly used in GMM-
HMMs, are more helpful for shallow neural nets than for
DBN-DNNs, presumably because DBN-DNNs are able to learn
appropriate features in their lower layers.

GOOGLE VOICE INPUT SPEECH RECOGNITION TASK
Google Voice Input transcribes voice search queries, short mes-
sages, e-mails, and user actions from mobile devices. This is a
large vocabulary task that uses a language model designed for a
mixture of search queries and
dictation.

Google’s full-blown model for
this task, which was built from a
very large corpus, uses an SI
GMM-HMM model composed of
context-dependent crossword tri-
phone HMMs that have a left-to-
right, three-state topology. This
model has a total of 7,969 senone states and uses as acoustic
input PLP features that have been transformed by LDA. Semi-
tied covariances (STCs) are used in the GMMs to model the LDA
transformed features and BMMI [46] was used to train the
model discriminatively.

Jaitly et. al. [47] used this model to obtain approximately
5,870 h of aligned training data for a DBN-DNN acoustic model
that predicts the 7,969 HMM state posteriors from the acoustic
input. The DBN-DNN was loosely based on one of the DBN-
DNNs used for the TIMIT task. It had four hidden layers with
2,560 fully connected units per layer and a final “softmax” layer
with 7,969 alternative states. Its input was 11 contiguous
frames of 40 log filter-bank outputs with no temporal deriva-
tives. Each DBN-DNN layer was pretrained for one epoch as an
RBM and then the resulting DNN was discriminatively fine-
tuned for one epoch. Weights with magnitudes below a thresh-
old were then permanently set to zero before a further quarter
epoch of training. One third of the weights in the final network
were zero. In addition to the DBN-DNN training, sequence-lev-
el discriminative fine-tuning of the neural network was per-
formed using MMI, similar to the method proposed in [37].
Model combination was then used to combine results from the
GMM-HMM system with the DNN-HMM hybrid, using the seg-
mental conditional random field (SCARF) framework [47].
Viterbi decoding was done using the Google system [48] with
modifications to compute the scaled log likelihoods from the
estimates of the posterior probabilities and the state priors.
Unlike the other systems, it was observed that for Voice Input it
was essential to smooth the estimated priors for good perfor-
mance. This smoothing of the priors was performed by rescal-
ing the log priors with a multiplier that was chosen by using a

grid search to find a joint optimum of the language model
weight, the word insertion penalty, and the smoothing factor.

On a test set of anonymized utterances from the live Voice
Input system, the DBN-DNN-based system achieved a WER of
12.3%—a 23% relative reduction compared to the best GMM-
based system for this task. MMI sequence discriminative train-
ing gave an error rate of 12.2% and model combination with the
GMM system 11.8%.

YOUTUBE SPEECH RECOGNITION TASK
In this task, the goal is to transcribe YouTube data. Unlike the
mobile voice input applications described above, this application
does not have a strong language model to constrain the inter-
pretation of the acoustic information so good discrimination
requires an accurate acoustic model.

Google’s full-blown baseline,
built with a much larger training
set, was used to create approxi-
mately 1,400 h of aligned training
data. This was used to create a
new baseline system for which
the input was nine frames of
MFCCs that were transformed by
LDA. SA training was performed,

and decision tree clustering was used to obtain 17,552 triphone
states. STCs were used in the GMMs to model the features. The
acoustic models were further improved with BMMI. During
decoding, ML linear regression (MLLR) and feature space MLLR
(fMLLR) transforms were applied.

The acoustic data used for training the DBN-DNN acoustic
model were the fMLLR-transformed features. The large number
of HMM states added significantly to the computational burden,
since most of the computation is done at the output layer. To
reduce this burden, the DNN used only four hidden layers with
2,000 units in the first hidden layer and only 1,000 units in each
of the layers above.

About ten epochs of training were performed on this data
before sequence-level training and model combination. The
DBN-DNN gave an absolute improvement of 4.7% over the
baseline system’s WER of 52.3%. Sequence-level fine-tuning of
the DBN-DNN further improved results by 0.5% and model
combination produced an additional gain of 0.9%.

ENGLISH BROADCAST NEWS
SPEECH RECOGNITION TASK
DNNs have also been successfully applied to an English
broadcast news task. Since a GMM-HMM baseline creates the
initial training labels for the DNN, it is important to have a
good baseline system. All GMM-HMM systems created at IBM
use the following recipe to produce a state-of-the-art base-
line system. First, SI features are created, followed by
SA-trained (SAT) and DT features. Specifically, given initial
PLP features, a set of SI features are created using LDA.
Further processing of LDA features is performed to create
SAT features using VTLN followed by fMLLR. Finally, feature

PRETRAINING DNNs AS
GENERATIVE MODELS LED TO BETTER

RECOGNITION RESULTS ON TIMIT
AND SUBSEQUENTLY ON A VARIETY

OF LVCSR TASKS.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [92] NOVEMBER 2012

and model-space discriminative training is applied using the
BMMI or MPE criterion.

Using alignments from a baseline system, [32] trained a
DBN-DNN acoustic model on 50 h of data from the 1996 and
1997 English Broadcast News Speech Corpora [37]. The
 DBN-DNN was trained with the
best-performing LVCSR features,
specifically the SAT+DT features.
The DBN-DNN architecture con-
sisted of six hidden layers with
1,024 units per layer and a final
softmax layer of 2,220 context-
dependent states. The SAT+DT
feature input into the first layer
used a context of nine frames.
Pretraining was performed fol-
lowing a recipe similar to [42].

Two phases of fine-tuning were performed. During the first
phase, the cross entropy loss was used. For cross entropy train-
ing, after each iteration through the whole training set, loss is
measured on a held-out set and the learning rate is annealed
(i.e., reduced) by a factor of two if the held-out loss has grown
or improves by less than a threshold of 0.01% from the previ-
ous iteration. Once the learning rate has been annealed five
times, the first phase of fine-tuning stops. After weights are
learned via cross entropy, these weights are used as a starting
point for a second phase of fine-tuning using a sequence crite-
rion [37] that utilizes the MPE objective function, a discrimi-
native objective function similar to MMI [7] but which takes
into account phoneme error rate.

A strong SAT+DT GMM-HMM baseline system, which con-
sisted of 2,220 context-dependent states and 50,000 Gaussians,
gave a WER of 18.8% on the EARS Dev-04f set, whereas the
DNN-HMM system gave 17.5% [50].

SUMMARY OF THE MAIN RESULTS FOR
DBN-DNN ACOUSTIC MODELS ON LVCSR TASKS
Table 3 summarizes the acoustic modeling results described
above. It shows that DNN-HMMs consistently outperform
GMM-HMMs that are trained on the same amount of data,
sometimes by a large margin. For some tasks, DNN-HMMs
also outperform GMM-HMMs that are trained on much
more data.

SPEEDING UP DNNs AT RECOGNITION TIME
State pruning or Gaussian selection methods can be used to
make GMM-HMM systems computationally efficient at recogni-
tion time. A DNN, however, uses virtually all its parameters at
every frame to compute state likelihoods, making it potentially

much slower than a GMM with a
comparable number of parame-
ters. Fortunately, the time that a
DNN-HMM system requires to
recognize 1 s of speech can be
reduced from 1.6 s to 210 ms,
without decreasing recognition
accuracy, by quantizing the
weights down to 8 b and using
the very fast SIMD primitives for
fixed-point computation that are
provided by a modern x86 cen-

tral processing unit [49]. Alternatively, it can be reduced to
66 ms by using a graphics processing unit (GPU).

ALTERNATIVE PRETRAINING METHODS FOR DNNs
Pretraining DNNs as generative models led to better recognition
results on TIMIT and subsequently on a variety of LVCSR tasks.
Once it was shown that DBN-DNNs could learn good acoustic
models, further research revealed that they could be trained in
many different ways. It is possible to learn a DNN by starting with
a shallow neural net with a single hidden layer. Once this net has
been trained discriminatively, a second hidden layer is interposed
between the first hidden layer and the softmax output units and
the whole network is again discriminatively trained. This can be
continued until the desired number of hidden layers is reached,
after which full backpropagation fine-tuning is applied.

This type of discriminative pretraining works well in prac-
tice, approaching the accuracy achieved by generative DBN pre-
training and further improvement can be achieved by stopping
the discriminative pretraining after a single epoch instead of
multiple epochs as reported in [45]. Discriminative pretraining
has also been found effective for the architectures called “deep
convex network” [51] and “deep stacking network” [52], where
pretraining is accomplished by convex optimization involving
no generative models.

Purely discriminative training of the whole DNN from ran-
dom initial weights works much better than had been thought,

provided the scales of the initial
weights are set carefully, a large
amount of labeled training data is
available, and minibatch sizes over
training epochs are set appropri-
ately [45], [53]. Nevertheless, gen-
erative pretraining still improves
test performance, sometimes by a
significant amount.

Layer-by-layer generative pre-
training was originally done
using RBMs, but various types of

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND
GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

TASK
HOURS OF
TRAINING DATA DNN-HMM

GMM-HMM
WITH SAME DATA

GMM-HMM
WITH MORE DATA

SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H)

SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1 (2,000 H)

ENGLISH BROADCAST NEWS 50 17.5 18.8

BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 30.4 36.2

GOOGLE VOICE INPUT 5,870 12.3 16.0 (22 5,870 H)

YOUTUBE 1,400 47.6 52.3

DISCRIMINATIVE PRETRAINING
HAS ALSO BEEN FOUND EFFECTIVE
FOR THE ARCHITECTURES CALLED
“DEEP CONVEX NETWORK” AND

“DEEP STACKING NETWORK,” WHERE
PRETRAINING IS ACCOMPLISHED BY
CONVEX OPTIMIZATION INVOLVING

NO GENERATIVE MODELS.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [93] NOVEMBER 2012

 autoencoder with one hidden layer can also be used (see Fig -
ure 2). On vision tasks, performance similar to RBMs can be
achieved by pretraining with “denoising” autoencoders [54]
that are regularized by setting a subset of the inputs to zero or
“contractive” autoencoders [55] that are regularized by penal-
izing the gradient of the activities of the hidden units with
respect to the inputs. For speech
recognition, im proved perfor-
mance was achieved on both
TIMIT and Broadcast News tasks
by pretraining with a type of
autoencoder that tries to find
sparse codes [56].

ALTERNATIVE FINE-TUNING
METHODS FOR DNNs
Very large GMM acoustic models
are trained by making use of the parallelism available in com-
pute clusters. It is more difficult to use the parallelism of cluster
systems effectively when training DBN-DNNs. At present, the
most effective parallelization method is to parallelize the matrix
operations using a GPU. This gives a speed-up of between one
and two orders of magnitude, but the fine-tuning stage remains
a serious bottleneck, and more effective ways of parallelizing
training are needed. Some recent attempts are described in [52]
and [57].

Most DBN-DNN acoustic models are fine-tuned by applying
stochastic gradient descent with momentum to small mini-
batches of training cases. More sophisticated optimization
methods that can be used on larger minibatches include nonlin-
ear conjugate-gradient [17], LBFGS [58], and “Hessian-free”
methods adapted to work for DNNs [59]. However, the fine-tun-
ing of DNN acoustic models is typically stopped early to prevent
overfitting, and it is not clear that the more sophisticated meth-
ods are worthwhile for such incomplete optimization.

OTHER WAYS OF USING DEEP NEURAL
NETWORKS FOR SPEECH RECOGNITION
The previous section reviewed experiments in which GMMs
were replaced by DBN-DNN acoustic models to give hybrid
DNN-HMM systems in which the posterior probabilities over
HMM states produced by the DBN-DNN replace the GMM out-
put model. In this section, we describe two other ways of using
DNNs for speech recognition.

USING DBN-DNNs TO PROVIDE
INPUT FEATURES FOR GMM-HMM SYSTEMS
Here we describe a class of methods where neural networks are
used to provide the feature vectors that the GMM in a GMM-
HMM system is trained to model. The most common approach
to extracting these feature vectors is to discriminatively train a
randomly initialized neural net with a narrow bottleneck mid-
dle layer and to use the activations of the bottleneck hidden
units as features. For a summary of such methods, commonly
known as the tandem approach, see [60], [61], and [63].

Instead of replacing the coefficients usually modeled by
GMMs, neural networks can also be used to provide additional
features for the GMM to model [8], [9], [63]. DBN-DNNs have
recently been shown to be very effective in such tandem sys-
tems. On the Aurora2 test set, pretraining decreased WERs by
more than one third for speech with signal-to-noise levels of

20 dB or more, though this effect
almost disappeared for very high
noise levels [64].

Recently, [62] investigated a
less direct way of producing fea-
ture vectors for the GMM. First,
a DNN with six hidden layers of
1,024 units each was trained to
achieve good classification accu-
racy for the 384 HMM states rep-
resented in its softmax output

layer. This DNN did not have a bottleneck layer and was there-
fore able to classify better than a DNN with a bottleneck. Then
the 384 logits computed by the DNN as input to its softmax
layer were compressed down to 40 values using a 384-128-40-
384 autoencoder. This method of producing feature vectors is
called AE-BN because the bottleneck is in the autoencoder rath-
er than in the DNN that is trained to classify HMM states.

Bottleneck feature experiments were conducted on 50-h and
430-h of data from the 1996 and 1997 English Broadcast News
Speech collections and English broadcast audio from TDT-4.
The baseline GMM-HMM acoustic model trained on 50 h was
the same acoustic model described in the section “English
Broadcast News Speech Recognition Task.” The acoustic model
trained on 430-h had 6,000 states and 150,000 Gaussians. Again,
the standard IBM LVCSR recipe described in the aforementioned
section was used to create a set of SA DT features and models.

All DBN-DNNs used SAT features as input. They were pre-
trained as DBNs and then discriminatively fine-tuned to predict
target values for 384 HMM states that were obtained by cluster-
ing the context-dependent states in the baseline GMM-HMM
system. As in the section “English Broadcast News Speech
Recognition Task,” the DBN-DNN was trained using the cross
entropy criterion, followed by the sequence criterion with the
same annealing and stopping rules.

THE FINE-TUNING OF DNN ACOUSTIC
MODELS IS TYPICALLY STOPPED

EARLY TO PREVENT OVERFITTING,
AND IT IS NOT CLEAR THAT THE

MORE SOPHISTICATED METHODS
ARE WORTHWHILE FOR SUCH
INCOMPLETE OPTIMIZATION.

Code Units Output UnitsInput Units

[FIG2] An autoencoder is trained to minimize the discrepancy
between the input vector and its reconstruction of the input
vector on its output units. If the code units and the output units
are both linear and the discrepancy is the squared reconstruction
error, an autoencoder finds the same solution as principal
components analysis (PCA) (up to a rotation of the components).
If the output units and the code units are logistic, an
autoencoder is quite similar to an RBM that is trained using CD,
but it does not work as well for pretraining DNNs unless it is
strongly regularized in an appropriate way. If extra hidden layers
are added before and/or after the code layer, an autoencoder
can compress data much better than PCA [17].

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [94] NOVEMBER 2012

After the training of the first DBN-DNN terminated, the final
set of weights was used for generating the 384 logits at the out-
put layer. A second 384-128-40-384 DBN-DNN was then trained
as an autoencoder to reduce the dimensionality of the output
logits. The GMM-HMM system that used the feature vectors
produced by the AE-BN was trained using feature and model
space discriminative training. Both pretraining and the use of
deeper networks made the AE-BN features work better for rec-
ognition. To fairly compare the performance of the system that
used the AE-BN features with the baseline GMM-HMM system,
the acoustic model of the AE-BN features was trained with the
same number of states and Gaussians as the baseline system.

Table 4 shows the results of
the AE-BN and baseline systems
on both 50- and 430-h, for dif-
ferent steps in the LVCSR recipe
described in the section “English
Broadcast News Speech Rec -
ognition Task.” On 50-h, the
AE-BN system offers a 1.3% absolute improvement over the
baseline GMM-HMM system, which is the same improvement
as the DBN-DNN, while on 430-h the AE-BN system provides a
0.5% improvement over the baseline. The 17.5% WER is the
best result to date on the Dev-04f task, using an acoustic model
trained on 50 h of data. Finally, the complementarity of the
AE-BN and baseline methods is explored by performing model
combination on both the 50- and 430-h tasks. Table 4 shows
that model-combination provides an additional 1.1% absolute
improvement over individual systems on the 50-h task, and a
0.5% absolute improvement over the individual systems on the
430-h task, confirming the complementarity of the AE-BN and
baseline systems.

USING DNNs TO ESTIMATE ARTICULATORY FEATURES
FOR DETECTION-BASED SPEECH RECOGNITION
A recent study [65] demonstrated the effectiveness of DBN-
DNNs for detecting subphonetic speech attributes (also known
as phonological or articulatory features [66]) in the widely
used The Wall Street Journal speech database (5k-WSJ0).
Thirteen MFCCs plus first- and second-temporal derivatives
were used as the short-time spectral representation of the
speech signal. The phone labels were derived from the forced
alignments generated using a GMM-HMM system trained with
ML, and that HMM system had 2,818 tied-state, crossword tri-

phones, each modeled by a mixture of eight Gaussians. The
attribute labels were generated by mapping phone labels to
attributes, simplifying the overlapping characteristics of the
articulatory features. The 22 attributes used in the recent
work, as reported in [65], are a subset of the articulatory fea-
tures explored in [66] and [67].

DBN-DNNs achieved less than half the error rate of shallow
neural nets with a single hidden layer. DNN architectures with
five to seven hidden layers and up to 2,048 hidden units per
layer were explored, producing greater than 90% frame-level
accuracy for all 21 attributes tested in the full DNN system. On
the same data, DBN-DNNs also achieved a very high per frame

phone classification accuracy of
86.6%. This level of accuracy for
detecting subphonetic funda-
mental speech units may allow a
new family of flexible speech
 recognition and understanding
systems that make use of phono-

logical features in the full detection-based framework dis-
cussed in [65].

SUMMARY AND FUTURE DIRECTIONS
When GMMs were first used for acoustic modeling, they were
trained as generative models using the EM algorithm, and it
was some time before researchers showed that significant gains
could be achieved by a subsequent stage of discriminative train-
ing using an objective function more closely related to the ulti-
mate goal of an ASR system [7], [68]. When neural nets were
first used, they were trained discriminatively. It was only recent-
ly that researchers showed that significant gains could be
achieved by adding an initial stage of generative pretraining that
completely ignores the ultimate goal of the system. The pre-
training is much more helpful in deep neural nets than in shal-
low ones, especially when limited amounts of labeled training
data are available. It reduces overfitting, and it also reduces the
time required for discriminative fine-tuning with backpropaga-
tion, which was one of the main impediments to using DNNs
when neural networks were first used in place o f GMMs in the
1990s. The successes achieved using pretraining led to a resur-
gence of interest in DNNs for acoustic modeling.
Retrospectively, it is now clear that most of the gain comes from
using DNNs to exploit information in neighboring fram es and
from modeling tied context-dependent states. Pretraining is
helpful in reducing overfitting, and it does reduce the time
taken for fine-tuning, but similar reductio ns in training time
can be achieved with less effort by careful choice of the scales of
the initial random weights in e ach layer.

The first method to be used for pretraining DNNs was to
learn a stack of RBMs, one per hidden layer of the DNN. An
RBM is an undirected generative model that uses binary latent
variables, but training it by ML is expensive, so a much faster,
approximate method called CD is used. This method has strong
similarities to training an autoencod er network (a nonlinear
version of PCA) that converts each datapoint into a code from

THE SUCCESSES ACHIEVED USING
PRETRAINING LED TO A RESURGENCE

OF INTEREST IN DNNS FOR
ACOUSTIC MODELING.

[TABLE 4] WER IN % ON ENGLISH BROADCAST NEWS.

50 H 430 H

LVCSR STAGE
GMM-HMM
BASELINE AE-BN

GMM/HMM
BASELINE AE-BN

FSA 24.8 20.6 20.2 17.6

+fBMMI 20.7 19.0 17.7 16.6

+BMMI 19.6 18.1 16.5 15.8

+MLLR 18.8 17.5 16.0 15.5

MODEL COMBINATION 16.4 15.0

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [95] NOVEMBER 2012

which it is easy to approximately reconstruct the datapoint.
Subsequent research showed that autoencoder networks with
one la yer of logistic hidden units also work well for pretraining,
especially if they are regularized by adding noise to the inputs
or by constraining the codes to be insensitive to small changes
in the input. RBMs do not require such regularization because
the Bernoulli noise introduced by using stochastic binary hid-
den units acts as a very st rong regularizer [21].

We have described how three major speech research groups
achieved significant improvements in a variety of sta te-of-the-
art ASR systems by replacing GMMs with DNNs, and we believe
that there is the potential for
considerable further improve-
ment. Ther e is no reason to
believe that we are currently
using the optimal types of hid-
den units or the optimal network
architectures, and it is highly
likely that both the pretraining
and fine-tuning algorithms can
be modified to reduce the
amount of overfitting and the amou nt of computation. We
therefore expect that the performance gap between acoustic
models that use DNNs and ones that use GMMs will continue to
increase for some t ime.

Currently, the biggest disadvantage of DNNs compared with
GMMs is that it is much harder to make good use of large clus-
 ter machines to train them on massive data sets. This is offset
by the fact that DNNs make more efficient use of data so they do
not require as much data to achieve the same performance, but
better ways of paralle lizing the fine-tuning of DNNs is still a
major issue.

AUTHORS
Geoffrey Hinton (geoffrey.hinton@gmail.com) received his
Ph.D. degree from the University of Edinburgh in 1978. He
spent five years as a faculty member at Carnegie Mellon
University, Pittsburgh, Pennsylvania, and he is currently a dis-
tinguished professor at the University of Toronto. He is a fellow
of the Royal Society and an honorary foreign member of the
American Academy of Arts and Sciences. His awards include the
David E. Rumelhart Prize, the International Joint Conference
on Artificial Intelligence Research Excellence Award, and the
Gerhard Herzberg Canada Gold Medal for Science and
Engineering. He was one of the researchers who introduced the
back-propagation algorithm. His other contributions include
Boltzmann machines, distributed representations, time-delay
neural nets, mixtures of experts, variational learning, CD learn-
ing, and DBNs.

Li Deng (deng@microsoft.com) received his Ph.D. degree
from the University of Wisconsin–Madison. In 1989, he joined the
Department of Electrical and Computer Engineering at the
University of Waterloo, Ontario, Canada, as an assistant professor,
where he became a tenured full professor in 1996. In 1999, he
joined MSR, Redmond, Washington, as a senior researcher, where

he is currently a principal researcher. Prior to MSR, he also
worked or taught at Massachusetts Institute of Technology, ATR
Interpreting Telecommunications Research Laboratories (Kyoto,
Japan), and Hong Kong University of Science and Technology. In
the general areas of speech recognition, signal processing, and
machine learning, he has published over 300 refereed papers in
leading journals and conferences and three books. He is a Fellow
of the Acoustical Society of America, the International Speech
Communication Association (ISCA) and the IEEE. He was ISCA’s
Distinguished Lecturer in 2010–2011. He has been granted over
50 patents and has received awards/honors bestowed by the IEEE,

ISCA, the Acoustical Society
of America (ASA), Microsoft, and
other organizations including
the latest 2011 IEEE Signal
Processing Society (SPS) Mer -
itorious Service Award. He served
on the Board of Governors of the
IEEE SPS (2008–2010), and as
editor-in-chief of IEEE Signal
Processing Magazine (2009–

2011). He is currently the editor-in-chief of IEEE Transactions on
Audio, Speech, and Language Processing (2012–2014). He is the
general chair of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) 2013.

Dong Yu (dongyu@ieee.org) received a Ph.D. degree in com-
puter science from the University of Idaho, an M.S. degree in
computer science from Indiana University at Bloomington, an
M.S. degree in electrical engineering from the Chinese Academy
of Sciences, and a B.S. degree (with honors) in electrical engi-
neering from Zhejiang University (China). He joined Microsoft
Corporation in 1998 and MSR in 2002, where he is a researcher.
His current research interests include speech processing, robust
speech recognition, discriminative training, spoken dialog sys-
tem, voice search technology, machine learning, and pattern
recognition. He has published more than 90 papers in these
areas and is the inventor/coinventor of more than 40 granted/
pending patents. He is currently an associate editor of IEEE
Transactions on Audio, Speech, and Language Processing
(2011–present) and has been an associate editor of IEEE Signal
Processing Magazine (2008–2011) and was the lead guest editor
of the Special Issue on Deep Learning for Speech and Language
Processing (2010–2011), IEEE Transactions on Audio, Speech,
and Language Processing.

George E. Dahl (george.dahl@gmail.com) received a
B.A. degree in computer science with highest honors from
Swarthmore College and an M.Sc. degree from the University of
Toronto, where he is currently completing a Ph.D. degree with a
research focus in statistical machine learning. His current main
research interest is in training models that learn many levels of
rich, distributed representations from large quantities of per-
ceptual and linguistic data.

Abdel-rahman Mohamed (asamir@cs.toronto.edu) received
his B.Sc. and M.Sc. degrees from the Department of Elec tronics
and Communication Engineering, Cairo University in 2004 and

CURRENTLY, THE BIGGEST
DISADVANTAGE OF DNNs

COMPARED WITH GMMs IS THAT IT IS
MUCH HARDER TO MAKE GOOD USE OF

LARGE CLUS TER MACHINES TO TRAIN
THEM ON MASSIVE DATA SETS.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [96] NOVEMBER 2012

2007, respectively. In 2004, he worked in the speech research
group at RDI Company, Egypt. He then joined the ESAT-PSI
speech group at the Katholieke Universiteit Leuven, Belgium. In
September 2008, he started his Ph.D. degree at the University of
Toronto. His research focus is in developing machine learning
techniques to advance human language technologies.

Navdeep Jaitly (ndjaitly@yahoo.com) received his B.A. degree
from Hanover College and an M.Math degree from the University
of Waterloo in 2000. After receiving his master’s degree, he
developed algorithms and statistical methods for analysis of pro-
toemics data at Caprion Pharmaceuticals in Montreal and at
Pacific Northwest National Labs in Washington. Since 2008, he
has been pursuing a Ph.D. degree at the University of Toronto.
His current interests lie in machine learning, speech recogni-
tion, computational biology, and statistical methods.

Andrew Senior (andrewsenior@google.com) received his
Ph.D. degree from the University of Cambridge and is a research
scientist at Google. Before joining Google, he worked at IBM
Research in the areas of handwriting, audio-visual speech, face,
and fingerprint recognition as well as video privacy protection
and visual tracking. He edited Privacy Protection in Video
Surveillance, coauthored Springer’s Guide to Biometrics and
over 60 scientific papers, holds 26 patents, and is an associate
editor of the journal Pattern Recognition. His research interests
range across speech and pattern recognition, computer vision,
and visual art.

Vincent Vanhoucke (vanhoucke@google.com) received his
Ph.D. degree from Stanford University in 2004 for research in
acoustic modeling and is a graduate from the Ecole Centrale
Paris. From 1999 to 2005, he was a research scientist with the
speech R&D team at Nuance, in Menlo Park, California. He is
currently a research scientist at Google Research, Mountain View,
California, where he manages the speech quality research team.
Previously, he was with Like.com (now part of Google), where he
worked on object, face, and text recognition technologies.

Patrick Nguyen (drpng@google.com) received his doctorate
degree from the Swiss Federal Institute for Technology (EPFL) in
2002. In 1998, he founded a company developing a platform real-
time foreign exchange trading. He was with the Panasonic Speech
Technology Laboratory from 2000 to 2004, in Santa Barbara,
California, and MSR in Redmond, Washington, from 2004 to
2010. He is currently a research scientist at Google Research,
Mountain View, California. His area of expertise revolves around
statistical processing of human language, and in particular,
speech recognition. He is mostly known for segmental condition-
al random fields and eigenvoices. He was on the organizing com-
mittee of the 2011 IEEE Workshop on Automatic Speech
Recognition and Understanding and he co-led the 2010 Johns
Hopkins University Workshop on Speech Recognition. He cur-
rently serves on the Speech and Language Technical Committee
of the IEEE SPS.

Tara Sainath (tsainath@us.ibm.com) received her Ph.D.
degree in electrical engineering and computer science from
Massachusetts Institute of Technology in 2009. The main focus
of her Ph.D. work was in acoustic modeling for noise robust

speech recognition. She joined the Speech and Language
Algorithms group at IBM T.J. Watson Research Center upon
completion of her Ph.D. degree. She organized a special ses-
sion on sparse representations at INTERSPEECH 2010 in
Japan. In addition, she has been a staff reporter of IEEE Speech
and Language Processing Technical Committee Newsletter.
She currently holds 15 U.S. patents. Her research interests
mainly focus in acoustic modeling, including sparse represen-
tations, DBN works, adaptation methods, and noise robust
speech recognition.

Brian Kingsbury (bedk@us.ibm.com) received the B.S.
degree (high honors) in electrical engineering from Michigan
State University, East Lansing, in 1989 and the Ph.D. degree
in computer science from the University of California,
Berkeley, in 1998. Since 1999, he has been a research staff
member in the Department of Human Language Tech -
nologies, IBM T.J. Watson Research Center, Yorktown Heights,
New York. His research interests include large-vocabulary
speech transcription, audio indexing and analytics, and infor-
mation retrieval from speech. From 2009 to 2011, he served
on the IEEE SPS’s Speech and Language Technical
Committee, and from 2010 to 2012 he was an ICASSP area
chair. He is currently an associate editor of IEEE Transactions
on Audio, Speech, and Language Processing.

REFERENCES
[1] J. Baker, L. Deng, J. Glass, S. Khudanpur, Chin Hui Lee, N. Morgan, and D.
O’Shaughnessy, “Developments and directions in speech recognition and under-
standing, part 1,” IEEE Signal Processing Mag., vol. 26, no. 3, pp. 75–80, May
2009.

[2] S. Furui, Digital Speech Processing, Synthesis, and Recognition. New York:
Marcel Dekker, 2000.

[3] B. H. Juang, S. Levinson, and M. Sondhi, “Maximum likelihood estimation for
multivariate mixture observations of Markov chains,” IEEE Trans. Inform. Theory,
vol. 32, no. 2, pp. 307–309, 1986.

[4] H. Hermansky, “Perceptual linear predictive (PLP) analysis of speech,” J.
Acoust. Soc. Amer., vol. 87, no. 4, pp. 1738–1752, 1990.

[5] S. Furui, “Cepstral analysis technique for automatic speaker verification,” IEEE
Trans. Acoust., Speech, Signal, Processing, vol. 29, no. 2, pp. 254–272, 1981.

[6] S. Young, “Large vocabulary continuous speech recognition: A review,” IEEE
Signal Processing Mag., vol. 13, no. 5, pp. 45–57, 1996.

[7] L. Bahl, P. Brown, P. de Souza, and R. Mercer, “Maximum mutual informa-
tion estimation of hidden Markov model parameters for speech recognition,” in
Proc. ICASSP, 1986, pp. 49–52.

[8] H. Hermansky, D. P. W. Ellis, and S. Sharma, “Tandem connectionist feature
extraction for conventional HMM systems,” in Proc. ICASSP. Los Alamitos, CA:
IEEE Computer Society, 2000, vol. 3, pp. 1635–1638.

[9] H. Bourlard and N. Morgan, Connectionist Speech Recognition: A Hybrid
Approach, Norwell, MA: Kluwer, 1993.

[10] L. Deng, “Computational models for speech production,” in Computational
Models of Speech Pattern Processing, K. M. Ponting, Ed. New York: Springer-
Verlag, 1999, pp. 199–213.

[11] L. Deng, “Switching dynamic system models for speech articulation and
acoustics,” in Mathematical Foundations of Speech and Language Processing,
M. Johnsonm S. P. Khudanpur, M. Ostendorf, and R. Rosenfeld. New York:
Springer-Verlag, 2003, pp. 115–134.

[12] A. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone rec-
ognition,” in Proc. NIPS Workshop Deep Learning for Speech Recognition and
Related Applications, 2009.

[13] A. Mohamed, G. Dahl, and G. Hinton, “Acoustic modeling using deep belief
networks,” IEEE Trans. Audio Speech Lang. Processing, vol. 20, no. 1, pp. 14–22,
Jan. 2012.

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[15] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in Proc. AISTATS, 2010, pp. 249–256.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [97] NOVEMBER 2012

[16] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep, big,
simple neural nets for handwritten digit recognition,” Neural Comput., vol. 22, no.
12, pp. 3207–3220, 2010.

[17] G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[18] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An empir-
ical evaluation of deep architectures on problems with many factors of variation,”
in Proc. 24th Int. Conf. Machine Learning, 2007, pp. 473–480.

[19] J. Pearl, Probabilistic Inference in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[20] G. E. Hinton, “Training products of experts by minimizing contrastive diver-
gence,” Neural Comput., vol. 14, pp. 1771–1800, 2002.

[21] G. E. Hinton, “A practical guide to training restricted Boltzmann machines,”
Tech. Rep. UTML TR 2010-003, Dept. Comput. Sci., Univ. Toronto, 2010.

[22] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief
nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

[23] T. N. Sainath, B. Ramabhadran, and M. Picheny, “An exploration of large
vocabulary tools for small vocabulary phonetic recognition,” in Proc. IEEE Au-
tomatic Speech Recognition and Understanding Workshop, 2009, pp. 359–364.

[24] A. Mohamed, T. N. Sainath, G. E. Dahl, B. Ramabhadran, G. E. Hinton,
and M. Picheny, “Deep belief networks using discriminative features for phone
recognition,” in Proc. ICASSP, 2011, pp. 5060–5063.

[25] A. Mohamed, G. Hinton, and G. Penn, “Understanding how deep belief net-
works perform acoustic modelling,” in Proc. ICASSP, 2012, pp. 4273–4276.

[26] Y. Hifny and S. Renals, “Speech recognition using augmented conditional
random fields,” IEEE Trans. Audio Speech Lang. Processing, vol. 17, no. 2, pp.
354–365, 2009.

[27] A. Robinson, “An application to recurrent nets to phone probability estima-
tion,” IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 298–305, 1994.

[28] J. Ming and F. J. Smith, “Improved phone recognition using Bayesian tri-
phone models,” in Proc. ICASSP, 1998, pp. 409–412.

[29] L. Deng and D. Yu, “Use of differential cepstra as acoustic features in hid-
den trajectory modelling for phonetic recognition,” in Proc. ICASSP, 2007, pp.
445–448.

[30] A. Halberstadt and J. Glass, “Heterogeneous measurements and multiple
classifiers for speech recognition,” in Proc. ICSLP, 1998.

[31] A. Mohamed, D. Yu, and L. Deng, “Investigation of full-sequence training
of deep belief networks for speech recognition,” in Proc. Interspeech, 2010, pp.
2846–2849.

[32] T. N. Sainath, B. Ramabhadran, M. Picheny, D. Nahamoo, and D. Kanevsky,
“Exemplar-based sparse representation features: From TIMIT to LVCSR,” IEEE
Trans. Audio Speech Lang. Processing, vol. 19, no. 8, pp. 2598–2613, Nov. 2011.

[33] G. E. Dahl, M. Ranzato, A. Mohamed, and G. E. Hinton, “Phone recognition
with the mean-covariance restricted Boltzmann machine,” in Advances in Neural
Information Processing Systems 23, J. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R.S. Zemel, and A. Culotta, Eds. Cambridge, MA: MIT Press, 2010, pp.
469–477.

[34] O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn, “Applying convolu-
tional neural networks concepts to hybrid NN-HMM model for speech recogni-
tion,” in Proc. ICASSP, 2012, pp. 4277–4280.

[35] X. He, L. Deng, and W. Chou, “Discriminative learning in sequential pattern
recognition—A unifying review for optimization-oriented speech recognition,”
IEEE Signal Processing Mag., vol. 25, no. 5, pp. 14–36, 2008.

[36] Y. Bengio, R. De Mori, G. Flammia, and F. Kompe, “Global optimization of
a neural network—Hidden Markov model hybrid,” in Proc. EuroSpeech, 1991.

[37] B. Kingsbury, “Lattice-based optimization of sequence classification criteria
for neural-network acoustic modeling,” in Proc. ICASSP, 2009, pp. 3761–3764.

[38] R. Prabhavalkar and E. Fosler-Lussier, “Backpropagation training for multi-
layer conditional random field based phone recognition,” in Proc. ICASSP, 2010,
pp. 5534–5537.

[39] H. Lee, P. Pham, Y. Largman, and A. Ng, “Unsupervised feature learning for
audio classification using convolutional deep belief networks,” in Advances in
Neural Information Processing Systems 22, Y. Bengio, D. Schuurmans, J.
Lafferty, C. K. I. Williams, and A. Culotta, Eds. Cambridge, MA: MIT Press, 2009,
pp. 1096–1104.

[40] L. Deng, D. Yu, and A. Acero, “Structured speech modeling,” IEEE Trans.
Audio Speech Lang. Processing, vol. 14, no. 5, pp. 1492–1504, 2006.

[41] H. Zen, M. Gales, Y. Nankaku, and K. Tokuda, “Product of experts for statisti-
cal parametric speech synthesis,” IEEE Trans. Audio Speech and Lang. Process-
ing, vol. 20, no. 3, pp. 794–805, Mar. 2012.

[42] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pretrained deep
neural networks for large-vocabulary speech recognition,” IEEE Trans. Audio
Speech Lang. Processing, vol. 20, no. 1, pp. 30–42, Jan. 2012.

[43] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using
context-dependent deep neural networks,” in Proc. Interspeech, 2011, pp.
437–440.

[44] D. Yu, L. Deng, and G. Dahl, “Roles of pretraining and fine-tuning in con-
text-dependent DBN-HMMs for real-world speech recognition,” in Proc. NIPS
Workshop Deep Learning and Unsupervised Feature Learning, 2010.

[45] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering in context-de-
pendent deep neural networks for conversational speech transcription,” in Proc.
IEEE ASRU, 2011, pp. 24–29.

[46] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon, and K.
Visweswariah, “Boosted MMI for model and feature-space discriminative train-
ing,” in Proc. ICASSP, 2008, pp. 4057–4060.

[47] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “An application of pre-
trained deep neural networks to large vocabulary speech recognition,” submitted
for publication.

[48] G. Zweig, P. Nguyen, D. V. Compernolle, K. Demuynck, L. Atlas, P. Clark,
G. Sell, M. Wang, F. Sha, H. Hermansky, D. Karakos, A. Jansen, S. Thomas, G.
S. V. S. Sivaram, S. Bowman, and J. Kao, “Speech recognition with segmental
conditional random fields: A summary of the JHU CLSP 2010 summer workshop,”
in Proc. ICASSP, 2011, pp. 5044–5047.

[49] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on CPUs,” in Proc. Deep Learning and Unsupervised Feature Learn-
ing NIPS Workshop, 2011 [Online]. Available: http://research.google.com/pubs/
archive/37631.pdf

[50] T. N. Sainath, B. Kingsbury, and B. Ramabhadran, “Improvements in us-
ing deep belief networks for large vocabulary continuous speech recognition,”
Speech and Language Algorithm Group, IBM, Yorktown Heights, NY, Tech.
Rep. UTML TR 2010-003, Feb. 2011.

[51] L. Deng and D. Yu, “Deep convex network: A scalable architecture for speech
pattern classification,” in Proc. Interspeech, 2011, pp. 2285–2288.

[52] L. Deng, D. Yu, and J. Platt, “Scalable stacking and learning for building deep
architectures,” in Proc. ICASSP, 2012, pp. 2133–2136.

[53] D. Yu, L. Deng, G. Li, and Seide F, “Discriminative pretraining of deep neural
networks,” U.S. Patent Filing, Nov. 2011.

[54] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked
denoising autoencoders: learning useful representations in a deep network with a
local denoising criterion,” J. Mach. Learn. Res., vol. 11, no. 11, pp. 3371–3408,
2010.

[55] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-
encoders: Explicit invariance during feature extraction,” in Proc. 28th Int. Conf.
Machine Learning, 2011, pp. 833–840.

[56] C. Plahl, T. N. Sainath, B. Ramabhadran, and D. Nahamoo, “Improved pre-
training of deep belief networks using sparse encoding symmetric machines,” in
Proc. ICASSP, 2012, pp. 4165–4168.

[57] B. Hutchinson, L. Deng, and D. Yu, “A deep architecture with bilinear mod-
eling of hidden representations: Applications to phonetic recognition,” in Proc.
ICASSP, 2012, pp. 4805–4808.

[58] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, “On opti-
mization methods for deep learning,” in Proc. 28th Int. Conf. Machine Learning,
2011, pp. 265–272.

[59] J. Martens, “Deep learning via Hessian-free optimization,” in Proc. 27th Int.
Conf. Machine learning, 2010, pp. 735–742.

[60] N. Morgan, “Deep and wide: Multiple layers in automatic speech recognition,”
IEEE Trans. Audio Speech Lang. Processing, vol. 20, no. 1, Jan. 2012, pp. 7–13.

[61] G. Sivaram and H. Hermansky, “Sparse multilayer perceptron for phoneme
recognition,” IEEE Trans. Audio Speech Lang. Processing, vol. 20, no. 1, Jan.
2012, pp. 23–29.

[62] T. N. Sainath, B. Kingsbury, and B. Ramabhadran, “Auto-encoder bottle-
neck features using deep belief networks,” in Proc. ICASSP, 2012, pp. 4153–4156.

[63] N. Morgan, Q. Zhu, A. Stolcke, K. Sonmez, S. Sivadas, T. Shinozaki, M. Os-
tendorf, P. Jain, H. Hermansky, D. Ellis, G. Doddington, B. Chen, O. Cretin, H.
Bourlard, and M. Athineos, “Pushing the envelope aside,” IEEE Signal Processing
Mag., vol. 22, no. 5, pp. 81–88, Sept. 2005.

[64] O. Vinyals and S. V. Ravuri, “Comparing multilayer perceptron to deep belief
network tandem features for robust ASR,” in Proc. ICASSP, 2011, pp. 4596–4599.

[65] D. Yu, S. Siniscalchi, L. Deng, and C. Lee, “Boosting attribute and phone
estimation accuracies with deep neural networks for detection-based speech rec-
ognition,” in Proc. ICASSP, 2012, pp. 4169–4172.

[66] L. Deng and D. Sun, “A statistical approach to automatic speech recognition
using the atomic speech units constructed from overlapping articulatory features,”
J. Acoust. Soc. Amer., vol. 85, no. 5, pp. 2702–2719, 1994.

[67] J. Sun and L. Deng, “An overlapping-feature based phonological model in-
corporating linguistic constraints: Applications to speech recognition,” J. Acoustic.
Soc. Amer., vol. 111, no. 2, pp. 1086–1101, 2002.

[68] P. C. Woodland and D. Povey, “Large scale discriminative training of hidden
Markov models for speech recognition,” Comput Speech Lang., vol. 16, no. 1, pp.
25–47, 2002.

[69] F. Grezl, M. Karaat, S. Kontar, and J. Cernocky. “Probabilistic and bottle-neck
features for LVCSR of meetings,” in Proc. ICASSP, 2007.
 [SP]

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2022 at 09:27:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

