aytony

求古寻论,散虑逍遥。

0%

机器学习阅读论文序列

论文序列

已读

  • [pdf] [doi] LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning. Nature, 521(7553), pp. 436–444. doi:10.1038/nature14539. 概论 Nature Review
  • [pdf] [src] Krizhevsky, A., Sutskever, I. and Hinton G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25(2), pp. 1090-1098. Available at: src (Accessed: 17 August 2022). 图片分类 AlexNet
  • [pdf] [doi] He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778. doi: 10.1109/CVPR.2016.90. 残差网络 ResNet CVPR best paper
  • [pdf] [doi] Hinton, Geoffrey, et al. (2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 29(6), pp. 82-97. doi: 10.1109/MSP.2012.2205597.

未分类

  • Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent neural networks. 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013.
  • Amodei, Dario, et al. Deep speech 2: End-to-end speech recognition in english and mandarin. arXiv preprint arXiv:1512.02595 (2015).
  • W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig Achieving Human Parity in Conversational Speech Recognition. arXiv preprint arXiv:1610.05256 (2016).
  • Srivastava, Nitish, et al. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15.1 (2014): 1929-1958. [pdf]
  • Ioffe, Sergey, and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015). [pdf] (An outstanding Work in 2015)
  • Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450 (2016). [pdf] (Update of Batch Normalization)
  • Jaderberg, Max, et al. Decoupled neural interfaces using synthetic gradients. arXiv preprint arXiv:1608.05343 (2016). [pdf] (Innovation of Training Method,Amazing Work)
  • Sutskever, Ilya, et al. On the importance of initialization and momentum in deep learning. ICML (3) 28 (2013): 1139-1147. [pdf] (Momentum optimizer)
  • Kingma, Diederik, and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014). [pdf] (Maybe used most often currently)
  • Andrychowicz, Marcin, et al. Learning to learn by gradient descent by gradient descent. arXiv preprint arXiv:1606.04474 (2016). [pdf] (Neural Optimizer,Amazing Work)
  • Han, Song, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149 2 (2015). [pdf] (ICLR best paper, new direction to make NN running fast,DeePhi Tech Startup)
  • Iandola, Forrest N., et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size. arXiv preprint arXiv:1602.07360 (2016).
  • Le, Quoc V. Building high-level features using large scale unsupervised learning. 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [pdf] (Milestone, Andrew Ng, Google Brain Project, Cat)
  • Kingma, Diederik P., and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013). [pdf] (VAE)
  • Goodfellow, Ian, et al. Generative adversarial nets. Advances in Neural Information Processing Systems. 2014. [pdf] (GAN,super cool idea)
  • Radford, Alec, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015). [pdf] (DCGAN)
  • Gregor, Karol, et al. DRAW: A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623 (2015). [pdf] (VAE with attention, outstanding work)
  • Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759 (2016). [pdf] (PixelRNN)
  • Oord, Aaron van den, et al. Conditional image generation with PixelCNN decoders. arXiv preprint arXiv:1606.05328 (2016). [pdf] (PixelCNN)
  • S. Mehri et al., SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. arXiv preprint arXiv:1612.07837 (2016).
  • Graves, Alex. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013). [pdf] (LSTM, very nice generating result, show the power of RNN)
  • Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. Advances in neural information processing systems. 2014. [pdf] (Outstanding Work)
  • Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. Advances in neural information processing systems. 2014. [pdf] (Outstanding Work)
  • Vinyals, Oriol, and Quoc Le. A neural conversational model. arXiv preprint arXiv:1506.05869 (2015). [pdf] (Seq-to-Seq on Chatbot)
  • Graves, Alex, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401 (2014). [pdf] (Basic Prototype of Future Computer)
  • Graves, Alex, et al. Hybrid computing using a neural network with dynamic external memory. Nature (2016). [pdf] (Milestone,combine above papers' ideas)
  • Mnih, Volodymyr, et al. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013). [pdf]) (First Paper named deep reinforcement learning)
  • Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning. Nature 518.7540 (2015): 529-533. [pdf] (Milestone)
  • Mnih, Volodymyr, et al. Asynchronous methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783 (2016). [pdf] (State-of-the-art method)
  • Silver, David, et al. Mastering the game of Go with deep neural networks and tree search. Nature 529.7587 (2016): 484-489. [pdf] (AlphaGo)
  • Rusu, Andrei A., et al. Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016). [pdf] (Outstanding Work, A novel idea)
  • Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning through probabilistic program induction. Science 350.6266 (2015): 1332-1338. [pdf] (No Deep Learning,but worth reading)
  • Antoine Bordes, et al. Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing. AISTATS(2012)
  • Ankit Kumar, et al. ****Ask Me Anything: Dynamic Memory Networks for Natural Language Processing.** arXiv preprint arXiv:1506.07285(2015)
  • Girshick, Ross, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. [pdf] (RCNN)
  • Redmon, Joseph, et al. You only look once: Unified, real-time object detection. arXiv preprint arXiv:1506.02640 (2015). [pdf] (YOLO,Oustanding Work, really practical)
  • Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L., and Polosukhin I. Attention is all you need. arXiv, 2017.
  • Tan, Mingxing, et al. EfficientDet: Scalable and Efficient Object Detection. arXiv preprint arXiv:1911.09070 (2019).
  • Karpathy, Andrej, and Li Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In arXiv preprint arXiv:1412.2306, 2014.
  • Fang, Hao, et al. From captions to visual concepts and back. In arXiv preprint arXiv:1411.4952, 2014.
  • Xu, Kelvin, et al. Show, attend and tell: Neural image caption generation with visual attention. In arXiv preprint arXiv:1502.03044, 2015.
  • Lee, et al. Fully Character-Level Neural Machine Translation without Explicit Segmentation. In arXiv preprint arXiv:1610.03017, 2016.
  • Levine, Sergey, et al. End-to-end training of deep visuomotor policies. Journal of Machine Learning Research 17.39 (2016): 1-40.
  • Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015). [pdf] (Outstanding Work, most successful method currently)
  • J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation. in CVPR, 2015. [pdf]
  • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.